Наследственная информация определение. Наследственная информация записана не только в днк. Наследственность и здоровье




Вопрос 1

Генетика как наука.

Предмет, проблемы, задачи, методы генетики. Основные этапы развития генетики.

Предмет.

Генетика изучает наследственность и изменчивость.

Слово «генетика» придумал У. Бэтсон (1906), Он же определили науку как физиологию наследственности и изменчивости. Почему люди разнообразны, почему так похожи друг на друга как представители одного вида или как родственники?

Ответ на эти вопросы дает генетика, и ответ – одинаков, потому, что каждый человек получил наследственные задатки – гены от своих родителей. Благодаря механизму наследования каждый индивидуум имеет черты сходства с предками.

Этапы развития .

Первые представления о наследственности содержатся в трудах ученых античной эпохи.

Уже к 5 в. до н. э. сформировались две основные теории: прямого и непрямого наследования признаков. Сторонниками прямого наследования был Гиппократ, который считал, что репродуктивный материал собирается из всех частей тела, и таким образом, все органы тела непосредственно влияют на признаки потомства. По мнению Гиппократа, здоровые части тела поставляют здоровый репродуктивный материал, а нездоровые – нездоровый, и в резу-те признаки, приобретаемые в течение жизни, должны наследоваться.

Аристотель был сторонником непрямого наследования. Он считал, что репродуктивный материал вовсе не поступает из всех частей тела, а производится из питательных ве-в, по своей природе, предназначенных для построения разных частей тела.

Дарвин высказал теорию, согласно которой, у растений или животных, все клетки отделяют от себя крошечные геммулы, рассеянные по всему организму, геммулы попадают в репродуктивные органы, таким образом признаки передаются потомкам.

(Гипотеза Пангенезиса) Она была опровержена. Мендель еще в 1865 г. Выпустил в свет работу «Опыты над растительными гибридами» но ее никто не принял во внимание, его не поняли. Ни один из его предшественников не догадался проанализировать свои резу-ты количественно.

Главная заслуга Менделя в том, что он сформулировал и применил принципы гибридологического анализа для проверки конкретной гипотезы – о наследственной передачи дискретных факторов.

Только в 1900 году они были заново открыты Де Фризом в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии. Было доказано, что те же законы справедливы и для животных. За эти 35 лет после Менделевских открытий вошла в науку и клеточная теория, было выяснено поведение хромосом, установлено постоянство хромосомных наборов, ядерная гипотеза наследственности, хромосомная теория Томас Морган.

В 1919 первая кафедра генетике в Петроградском университете (основатель Филипченко) В 1930 кафедра генетики в Московском университете.

На рубеже 40-х Дж. Бидл и Э. Тейтум заложили основы биохимической генетики. Они показали, что мутации у хлебной плесени блокируют различные этапы клеточного метаболизма и высказали предположение, что гены контролируют биосинтез ферментов. В 1944 г. американские ученые доказали генетическую роль нуклеиновых кислот. Они идентифицировали природу трансформирующего агента как молекулы ДНК. (Рождение молекулярной генетики) Расшифровка ДНК – американский вирусолог Дж.

Уотсон и английский физик Ф. Крик. (1953)

Методы.

Гибридологический – заключается в гибридизации и последующем учете расщеплений, был предложен Менделем.

1) скрещиваемые организмы должны принадлежать к одному виду.

2) Скр.орг. должны четко различаться по отдельным признакам.

3) изучаемые признаки должны быть константны, те воспроизводиться из поколения в поколение при скрещивании в пределах линии.

4) Необходимы характеристика и количественный учет всех классов расщепления, если оно наблюдается у гибридов первого и последующего поколений.

Позволяет выяснить степень родства между отдаленными родами и видами.

Математический

Мендель применил количественный подход к изучению резу-ов скрещиваний.

Сравнение количественных данных эксперимента с теоретически ожидаемыми. Изучение изменчивости наследственной или модификационной.

Цитологический

Нужен для изучения клетки как основной единицы живой материи.

Исследование строения хромосом.

Методы химии и биохимии

Применимы для более детального изучения характеристики наследуемых признаков обмена ве-в, изучения сво-в молекул белков и нуклеиновых кислот.

Методы иммунологии и иммунохимии.

Методы физики

Оптические, седиментационные, методы меченых атомов,.

Задачи:

Выявление наследственных заболеваний на ранних стадиях, изучение мутагенной активности и тд. и тп.

Вопрос 2

Генетическая информация содержится в хромосомах. При делении клетки митозом в дочерние клетки попадает одинаковый набор хромосом, образуется клон.

При мейозе происходит кроссинговер (генетическая рекомбинация), в дочерние клетки попадают измененные хромосомы с гаплоидным набором хромосом.

Независимое расхождение хромосом при мейозе и независимая встреча гамет – основа генетической изменчивости.

12345678910Следующая ⇒

Похожая информация:

Поиск на сайте:

0911-0920

911. В загрязненной экологической среде вредные вещества достигают наибольшей концентрации в организмах
А) растений
Б) травоядных животных
В) хищников
Г) насекомых-опылителей

В целях устойчивого развития и сохранения биосферы человек
А) полностью уничтожает хищников в экосистемах
Б) регулирует численность популяций отдельных видов
В) увеличивает численность травоядных животных
Г) увеличивает численность насекомых-вредителей

913. Отложения бокситов и железной руды являются результатом функции живого вещества
А) газовой
Б) окислительно-восстановительной
В) миграционной
Г) биохимической

Конспект

Агроэкосистемы менее устойчивы, чем экосистемы, так как в них
А) нет продуцентов и редуцентов
Б) ограниченный видовой состав растений
В) животные занимают первый трофический уровень
Г) замкнутый круговорот веществ и превращения энергии

Конспект

Укажите глобальную экологическую проблему современного человечества
А) активное расселение людей по планете
Б) рост численности населения Земли
В) создание новых сортов растений и пород животных
Г) акклиматизация растений и животных

Конспект

916. На каком уровне организации происходит реализация наследственной информации
А) биосферном
Б) экосистемном
В) популяционно-видовом
Г) организменном

Конспект

Сколько хромосом содержится в соматических клетках человека
А) 26
Б) 36
В) 46
Г) 56

Конспект

Синтез белка происходит в
А) аппарате Гольджи
Б) рибосомах
В) гладкой эндоплазматической сети
Г) лизосомах

Конспект

Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК
А) ЦГТ
Б) АГЦ
В) ГЦТ
Г) ЦГА

Конспект

920. Пластический обмен в клетке характеризуется
А) распадом органических веществ с освобождением энергии
Б) образованием органических веществ с накоплением в них энергии
В) всасыванием питательных веществ в кровь
Г) перевариванием пищи с образованием растворимых веществ

© Д.В.Поздняков, 2009-2018


Adblock detector

1. Доказательство роли ДНК в наследственности.

2. Химический состав и структура нуклеиновых кислот.

3. Строение и типы РНК.

4. Генетический код.

Синтез белка в клетке.

Проведенные исследования на микроорганизмах с применением новейших методов исследований, структурного анализа, электронной микроскопии, меченных атомов и т.д. позволили установить, что генетическое строение сосредоточено на нуклеиновых кислотах.

Гриффит впервые получил доказательства возможной передачи наследственных задатков от одной бактерии к другой. Ученый вводил мышам вирулентный капсульный и авирулентный бескапсульный штамм пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали.

При введении авирулентного бескапсульного штамма мыши не погибали.

При введении вирулентного капсульного штамма убитого нагреванием, мыши также не гибли.

В следующем опыте он ввел смесь живой культуры вирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного и получил неожиданный результат – мыши заболели пневмонией.

Из крови погибших животных были выделены бактерии, которые обладали вирулентностью. Следовательно, живые бактерии авирулентного бескапсульного штамма трансформировались – приобрели свойство убитых болезнотворных бактерий.

Основывая на этих опытах, 1944 г. О. Эвери и др. доказали, что трансформирующим фактором является ДНК.

Генетическая теория реализуется в процессе биосинтеза белков. Все основания свойства живых организмов определяются структурой и функцией белковых молекул.

В последние 40 лет в ряде лабораторий разных стран мира было выяснено, что синтез специфических белков предопределен генетически. В молекулах ДНК зашифрована наследственная информация о строении каждого белка. ДНК обеспечивает хранение и передачу генетической информации из поколения в поколение. Участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или р-РНК, называют геном. Реализация наследственной информации осуществляется с участием РНК.

Белки — структурная основа всех клеток, органов и тканей организма.

Главные структурные элементы белковых молекул – 20 аминокислот. Специфика строения белковой молекулы определяется наличием определенных аминокислот и порядком их расположения в полипептидных цепях.

В данном разделе изучаются следующие вопросы: структура и функции нуклеиновых кислот (ДНК, РНК); генетический код и его основные свойства; строение, функции и основные свойства гена; строение и функционирование генетического материала у прокариот (бактерий, вирусов, фагов, плазмид), генетическая инженерия, ее методы и практическое значение.

Важным открытием в молекулярной генетике явилось установление Дж.Уотсоном и Ф.Криком структуры молекулы ДНК в виде двойной спирали.

После ознакомления со строением и особенностями репликации ДНК переходите к изучению строения, типов и функции РНК, при этом выясните остальные отличия РНК от ДНК.

Обратите внимание на размеры молекул разных типов РНК.

После изучения этих вопросов необходимо внимательно ознакомиться с проблемой генетического кода и биосинтеза белка. В 50-60 годы установлены основные понятия генетического кода: нуклеотид ДНК или РНК – это “буква языка”; триплет или кодон (три нуклеотида) – “Слово языка” – соответствует аминокислоте, а ген (около 1000 пар азотистых оснований) – “фраза”, в соответствии с которой синтезируется полипептидная цепь.

Генетический код состоит из 64 триплетов (43=64), кодирующих 20 аминокислот (3 , с. 90-92).

Ознакомившись с генетическим кодом синтеза белка, рассмотрите процесс синтеза полипептидной цепи аминокислот в цитоплазме. В нем участвуют рибосомы, и-РНК, т-РНК, ферменты.

Это последний этап перехода генетической информации от гена к структуре белка, или трансляция.

Отметьте, что в составе генов имеются транскрибируемые участки, несущие информацию о структуре белка (экзоны); участки, не несущие такой информации (интроны); а также регуляторные участки для опознания гена и точки начала считывания при транскрипции.

Литература: 1 , с.

133-168; 2 , с.197-214; 3, с. 77-102; 4, с. 74-91;

Дата публикования: 2014-11-29; Прочитано: 319 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Передача наследственной информации (понятие о митозе и мейозе, законы Менделя)

Предыдущая123456789Следующая

Мейоз и митоз

Мейоз - это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое.

Он состоит из двух последовательно идущих деле-ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна.

В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме-ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется .

Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло-дотворенную яйцеклетку называют зиготой .

Митоз , или непрямое деление , наиболее широко рас-пространен в природе.

Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь-ных фаз (см. далее таблицу). Благодаря митозу обеспечи-вается равномерное распределение генетической информа-ции родительской клетки между дочерними.

Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща-ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой.

К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас-средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис-ходит дальнейшая спирализация хромосом.

В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи-ваются, вновь образуются ядрышки и ядерные мембраны.

В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу-ются две новые дочерние.

законы Менделя

установленные Г. Менделем закономерности распределения в потомстве наследств, признаков.

Основой для формулировки М. з. послужили многолетние (1856-63) опыты по скрещиванию неск. сортов гороха. Современники Г. Менделя не смогли оценить важности сделанных им выводов (его работа была доложена в 1865 и вышла в свет в 1866), и лишь в 1900 эти закономерности были переоткрыты и правильно оценены независимо друг от друга К.

Корренсом, Э. Чермаком и X. Де Фризом. Выявлению этих закономерностей способствовало применение строгих методов подбора исходного материала, спец.

схемы скрещиваний и учёта результатов экспериментов. Признание справедливости и значения М. з. в нач. 20 в. связано с определ. успехами цитологии и формированием ядерной гипотезы наследственности. Механизмы, лежащие в основе М.

з., были выяснены благодаря изучению образования половых клеток, в частности поведения хромосом в мейозе, и доказательству хромосомной теории наследственности.

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку.

При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминировапие). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны - Аа), а значит, и по фенотипу.

Закон расщепления , или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определ.

соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодомииировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т.

е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), к-рое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расшепления по фенотипу в соответствии со вторым законом Менделя.

Закон независимого комбинирования (наследования) признаков , или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определ.

соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования).

При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Этот закон основан на независимом поведении (расщеплении) неск. пар гомологичных хромосом (рис. 2). Напр., при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, aB, ab) и после образования зигот - закономерному расщеплению по генотипу и соответственно по фенотипу.

Как один из М.

з. в генетич. лит-ре часто упоминают закон чистоты гамет. Однако, несмотря на фундаментальность этого закона (что подтверждают результаты тетрадного анализа), он не касается наследования признаков и, кроме того, сформулирован не Менделем, а У.

Бэтсоном (в 1902).

Для выявления М. з. в их классич. форме необходимы: гомозиготность исходных форм, образование у гибридов гамет всех возможных типов в равных соотношениях, что обеспечивается правильным течением мейоза; одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении; одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении, либо к искажению соотношения разл.

гено- и фенотипов. М. з., вскрывшие дискретную, корпускулярную природу наследственности, имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом.

Для полиплоидов выявляют принципиально те же закономерности наследования, однако числовые соотношения гено- и фенотипич. классов отличаются от таковых у диплоидов. Соотношение классов изменяется и у диплоидов в случае сцепления генов («нарушение» третьего закона Менделя).

В целом М. з. справедливы для аутосомпых генов с полной пенетрантностью и постоянной экспрессивностью. При локализации генов в половых хромосомах или в ДНК органоидов (пластиды, митохондрии) результаты реципроксных скрещиваний могут различаться и не следовать М. з., чего не наблюдается для генов, расположенных в аутосомах.

М. з. имели важное значение - именно на их основе происходило интенсивное развитие генетики на первом этапе. Они послужили основой для предположения о существовании в клетках (гаметах) наследств, факторов, контролирующих развитие признаков. Из М. з. следует, что эти факторы (гены) относительно постоянны, хотя и могут находиться в разл. состояниях, парны в соматич.

клетках и единичны в гаметах, дискретны и могут вести себя независимо по отношению друг к другу. Всё это послужило в своё время серьёзным аргументом против теорий «слитной» наследственности и было подтверждено экспериментально.

4 Генетическая изменчивость. Понятие о мутациях (типы мутаций и их роль в видообразовании)

Мута́ция (лат. mutatio - изменение) - стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды.

Процесс возникновения мутаций получил название мутагенеза .

Причины мутаций

Мутации делятся на спонтанные и индуцированные .

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 - 10 − 12 на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке.

Основные процессы, приводящие к возникновению мутаций - репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Предыдущая123456789Следующая

(см. Информация, Генетика) - программа свойств организма, заложенная в наследуемых структурах (ДНК, отчасти в РНК) и получаемая от предков в виде генетического кода. Наследуемая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к тем или иным заболеваниям и генетическим порокам организма.

  • - информация о свойствах организма, к-рая передаётся по наследству. Г. и. записана последовательностью нуклеотидов молекул нуклеиновых к-т...

    Биологический энциклопедический словарь

  • - см. наследственная информация...

    Словарь ботанических терминов

  • - Наследственные потенции, записанные в последовательностях нуклеотидов ДНК...

    Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

  • - программа свойств организма, заложенная в наследуемых структурах и получаемая от предков в виде генетического кода. Наследуемая информация определяет морфологическое строение, рост, развитие, обмен веществ,...

    Начала современного Естествознания

  • - получаемые от предков и заложенные в наследств. структурах организмов в виде совокупности генов программы о составе, строении и характере обмена составляющих организм в-в....

    Естествознание. Энциклопедический словарь

  • - см. Тернера-Кизера синдром...

    Большой медицинский словарь

  • - см. Афибриногенемия...

    Большой медицинский словарь

  • - Б. на руках, наследуемая по аутосомно-доминантному...

    Большой медицинский словарь

  • - информация о строении и функциях организма, заложенная в совокупности генов...

    Большой медицинский словарь

  • - см. Изменчивость генотипическая...

    Большой медицинский словарь

  • - общее название наследственных болезней, обусловленных нарушением равновесия между процессами окисления гемоглобина и метгемоглобина и процессами восстановления гемоглобина, проявляющихся на первом году жизни...

    Большой медицинский словарь

  • - см. Генетическая информация...

    Большой медицинский словарь

  • - заключенная в ДНК способность вызывать специфические биохимические реакции, а также развитие видоспецифических признаков...

    Экологический словарь

  • - генетическая информация о наследственных структурах организма, получаемая от предков в виде совокупности генов...

    Экологический словарь

  • - заложенная в наследственных структурах организмов, получаемая от предков в виде совокупности Генов информация о составе, строении и характере обмена составляющих организм веществ и нуклеиновых кислот) и...

    Большая Советская энциклопедия

  • - получаемые от предков и заложенные в наследственных структурах организмов в виде совокупности генов программы о составе, строении и характере обмена составляющих организм веществ...

    Большой энциклопедический словарь

"Информация генетическая (наследственная)" в книгах

автора Панов Евгений Николаевич

автора

автора Курчанов Николай Анатольевич

автора

Наследственная информация - почтовым переводом

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Наследственная информация - почтовым переводом Коль скоро у многоклеточных животных спермин унаследовали от одноклеточных известную долю индивидуальности и суверенности, а именно способность активно передвигаться и разыскивать яйцеклетку, они могут в принципе

Глава 1. Генетическая информация

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Глава 1. Генетическая информация Ключевой проблемой биологии, по-видимому, можно считать вопрос о том, как увековечивает свой опыт живая материя. М. Дельбрюк (1906–1981), американский генетик, лауреат Нобелевской премии 1969 г. При изучении любого биологического феномена

Глава 3. Генетическая информация

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Глава 3. Генетическая информация Носителями наследственной информации в природе являются нуклеиновые кислоты. Именно они выполняют три необходимые для жизни функции: хранение, воспроизведение и реализацию этой информации. В ходе эволюции ключевая роль по хранению и

30. Изменчивость: наследственная и ненаследственная

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

30. Изменчивость: наследственная и ненаследственная Вспомните!Какие виды изменчивости вам известны?Приведите примеры признаков, изменяющихся под воздействием внешней среды.Что такое мутации?Изменчивость – одно из важнейших свойств живого, способность живых

Наследственная (или семейная традиция)

Из книги Развитие сверхспособностей. Вы можете больше, чем думаете! автора Пензак Кристофер

Наследственная (или семейная традиция) Наследственные ведьмы утверждают, что их традиция корнями уходит ко времени до вмешательства гарднерианского ведовства. Учение передавалось в изустной форме от одного члена семьи другому, и таким образом все посвященные

Наследственная знать

Из книги автора

Наследственная знать Отношения чжухоу с наследственной знатью, т. е. с владетельными аристократами, объединенными в могущественные кланы, складывались по классическому принципу феодализма «вассал моего вассала- не мой вассал». Этот принцип возник и тем более

Наследственная предрасположенность

Из книги Домашняя медицинская энциклопедия. Симптомы и лечение самых распространенных заболеваний автора Коллектив авторов

Наследственная предрасположенность При исследовании большой группы детей и подростков было установлено, что гастритом, как правило, заболевали те дети, родители которых страдали хроническими заболеваниями желудочно-кишечного тракта. Ученые предполагают, что

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства Термины и понятия, проверяемые в экзаменационной работе: антикодон, биосинтез, ген, генетическая информация,

Генетическая информация

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

§ 3 Наследственная трансмиссия

Из книги Наследственное право России: учебник автора Гуреев Владимир Александрович

§ 3 Наследственная трансмиссия Наследственная трансмиссия в самом общем виде представляет собой переход права на принятие наследства (ст. 1156 ГК?РФ).Полагаем правильным восстановление в самом названии статьи 1156 ГК?РФ традиционного для наследственного права понятия

«Наследственная» мигрень

Из книги Добрая сила [Самогипноз] автора Лекрон Лесли М.

«Наследственная» мигрень О том, что хронические головные боли передаются в семье от поколения к поколению, известно давно; а вот какую роль в этом играет наследственность, сказать трудно. Не исключено, что она всего лишь обеспечивает «конституциональную»


Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Предполагается, что становление генетической информации шло по схеме: геохимические процессы - минералообразование - эволюционный катализ (автокатализ).

Почти вся генетическая информация хранится в ядре клетки. Давайте рассмотрим, что она собой представляет и в каком виде она находится.
За генетическую информацию несет ответственность ДНК, а в случае вирусов РНК. Внутри ядра ДНК «сложена» в структуры называемые хромосомы. В человеческом теле содержится более 2 метров ДНК. Информация о строении белков зашифрована на молекулах ДНК и РНК специальным генетическим кодом. Эта информация предается в процессе репликации (удвоения) ДНК. Генетическую информацию мы получаем при рождении от мамы и папы в виде множества генов. Что интересно все клетки нашего организма содержат одинаковую генетическую информацию. Как же тогда возможно выполнения различными клетками совершенно разных функций? Дело в том, что в клетках не реализуется вся генетическая информация, а только лишь необходимые участки - гены.

Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: - по каналу прямой связи: ДНК - РНК - белок; и - по каналу обратной связи: среда - белок - ДНК.

Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно. Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам. Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.

В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И. Карагодин считает: "Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды". Связь информации с жизнью отмечает и А.А. Ляпунов: "Жизнь - это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул". Известный наш астрофизик Н.С. Кардашев также подчеркивает информационную составляющую жизни: "Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации". На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге "Физика бессмертия" эколог Ф. Типлер: "Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором". Более того, он считает, если это так, то система жизнь - информация является вечной, бесконечной и бессмертной.

Раскрытие генетического кода и установление закономерностей молекулярной биологии показали необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма - синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию.

Основные идеи эволюции Дарвина с его триадой - наследственностью, изменчивостью, естественным отбором - в современном представлении эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически. Началом разработки синтетической или общей эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.

Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. А с другой - к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.

Генетический код – это система записи генетической информации в молекуле нуклеиновой кислоты о строении молекулы полипептида, а именно, о количестве, последовательности расположения и типах аминокислот. В одном гене записана информация об одной полипептидной цепочке, т.е. о первичной структуре белка.

Генетический код характеризуется триплетностью, т.е. три нуклеотида, расположенные последовательно в цепочке нуклеиновой кислоты (ДНК или РНК), образуют триплет или кодон (кодовое слово), который кодирует одну аминокислоту и ее местоположение в пептидной цепи. Кодоны различаются последовательностью и типами нуклеотидов (азотистых оснований). Существует 64 типа кодонов, что соответствует количеству возможных сочетаний из 4 (4 типа нуклеотидов, различающихся азотистыми основаниями) по 3 (43). 61 из них – информативные кодоны, они определяют (кодируют) аминокислоты. 3 кодона (в ДНК – АТТ, АТЦ, АЦТ, соответственно в иРНК – УАА, УАГ, УГА) называют стоп-кодонами, они обеспечивают окончание синтеза белковой цепочки. Кодон ТАЦ в ДНК или АУГ в иРНК (кодирует аминокислоту метионин) – стартовый, т.е. стоит первым в гене и с него начинается синтез пептида.

При расшифровке генетического кода оказалось, что большинство аминокислот кодируются несколькими разными кодонами, другими словами, существуют кодоны – синонимы, которые различаются часто только третьими нуклеотидами (азотистыми основаниями). Например, кодоны в ДНК ЦГА, ЦГГ, ЦГТ кодируют аланин, а кодоны ГЦА, ГЦГ, ГЦТ, ГЦЦ, ТЦТ, ТЦЦ – аргинин. Это свойство генетического кода называется вырожденностью или избыточностью.

Вместе с тем было показано, что один кодон кодирует только одну аминокислоту, т.е. в нем может быть записана информация только об одной аминокислоте – иными словами, генетический код однозначен.

Генетический код обладает также неперекрываемостью, это означает, что кодоны располагаются линейно, и один нуклеотид входит в состав только одного кодона; и непрерывностью – кодоны не отделены один от другого, располагаются в цепи нуклеиновой кислоты друг за другом, т.е. расстояние между кодонами соответствует расстоянию между нуклеотидами, а какие-либо сигналы, указывающие на начало или конец кодонов, отсутствуют.

Универсальность генетического кода подразумевает, что генетический код всех организмов характеризуется одинаковыми свойствами (триплетностью, вырожденностью и т.д.); и что смысл кодонов у всех организмов один и тот же (исключение составляют некоторые кодоны митохондрий и бактерий).

У всех прокариотических и эукариотических организмов генетическая информация записана только в одной цепи ДНК, которая называется кодогенной (информативной или значащей) и обозначается знаком "+", вторая цепь не несет генетической информации – некодогенная (неинформативная или незначащая), и обозначается знаком "–".

Сохранение генетической информации

Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют одну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру с книгопечатанием. Например, книга издана тиражом N экземпляров. Все N книг отпечатаны с одного шаблона - типографской матрицы, поэтому они совершенно одинаковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате сложных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соединений, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структуре и деятельности клеток, о всех признаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Участок молекулы ДНК, служащий матрицей для синтеза одной полипептидной цепи, т. е. в большинстве случаев одного белка, называют геном. Каждая молекула ДНК содержит множество разных генов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информация записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирована еще в 20-х годах выдающимся отечественным биологом Н. К. Кольцовым.

Расшифровка генетического кода человека

В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.

Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%. Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков. Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.

Завершающая часть работы по секвенсированию генома человека заняла у учёных около трёх лет. Расшифровка хромосомы 1 потребовала наибольшего времени, поскольку эта хромосома - самая длинная во всем геноме. Она в шесть раз длиннее самых коротких хромосом (21, 22 и Y). В ней находится около 8% генетического кода: 3141 ген и 991 псевдоген, причем многие кодирующие последовательности перекрываются. Мутации и нарушения в хромосоме ответственны за возникновение более чем 350 заболеваний, включая рак. Так что важность публикации полной карты этой хромосомы сложно переоценить.



Генетика – наука, изучающая наследственность и изменчивость живых организмов.

Наследственность заключается в способности организмов передавать особенности строения, функции, развития своему потомству. Наследственность обеспечивает преемственность между поколениями и обусловливает существование видов. Кроме того, выделяют понятие наследования, подразумевая конкретный способ передачи наследственной информации в ряду поколений, который может быть различен в зависимости от форм размножения, локализации генов в хромосомах и т. п. В основе наследственности лежат структурные и функциональные возможности генетической информации клеток.

Полинуклеотидная последовательность ДНК практически у всех организмов (исключение составляют РНК-содержащие вирусы) являются первичным носителем генетической информации. Прокариоты и многие вирусы содержат одну молекулу ДНК, все участки которой кодируют макромолекулы. В эукариотических клетках генетический материал распределен в нескольких хромосомах. Хромосома содержит одну молекулу ДНК, полинуклеотидная последовательность которой состоит из участков, кодирующих и некодирующих макромолекулы. Некодирующие области ДНК играют структурную роль, позволяя участкам генетического материала упаковываться определенным образом. Другая часть некодирующей ДНК является регуляторной и участвует во включении генов, направляющих синтез белка.

Единицей наследственной информации, далее не делимыми в функциональном отношении, является ген , ответственный за формирование какого-либо элементарного признака. Ген представлен участком ДНК (реже РНК), кодирующий синтез одной макромолекулы: полипептида, рРНК, либо тРНК. Гены находятся в определенных участках хромосом – локусах . Гены в одинаковых локусах гомологичных хромосом и отвечающие за развитие вариантов какого-либо признака, называют аллельными . Их принято обозначать буквами латинского алфавита. Аллельные гены могут быть доминантными или преобладающими (А, В ) или рецессивными или подавляемыми (a, b ).

Доминантным называют аллель, обеспечивающий развитие признака как в гомо-, так и в гетерозиготном состоянии. Рецессивным – аллель, проявляющийся только в гомозиготном состоянии. Разные аллельные формы генов возникают в результате мутации – изменения структуры полинуклеотидной последовательности ДНК соответству­ющих локусов гомологичных хромосом. Ген может мутировать неоднократно, образуя много аллелей. Если в генофонде популяции существует серия мутаций какого-либо гена, определяющая многообразие вариантов признака, то имеет место явление множественного аллелизма . Однако при образовании следующего поколения аллели комбинируются попарно у каждого индивидуума.

Совокупность генов гаплоидного набора хромосом получила название генόм , а информация внеядерных ДНК (митохондрии, пластиды) – плазмон .

Фенотип – совокупность всех признаков и свойств организма .

Генотип совокупность всех генов организма.

Генофонд – совокупность генов популяции.

Кариотип – совокупность морфологических признаков хромосом вида (размер, форма, детали строения, число и т. д.).

Фенотип формируется в процессе реализации наследственной информации генотипа под воздействием факторов окружающей среды.

В живой природе существуют различия не только между индивидами разных видов, но и между индивидами одного и того же вида, сорта, породы и т.п. В пределах одного вида практически не встречаются совершенно идентичные особи. Эта изменчивость хорошо видна в пределах вида Homo sapiens – Человек разумный, каждый представитель которого имеет свои индивидуальные особенности.

Изменчивость – свойство живых организмов, противоположное наследственности. Оно заключается в изменении наследственных факторов и их проявлений в процессе развития организмов. Изменчивость неразрывно связана с наследственностью.

Конец работы -

Эта тема принадлежит разделу:

Концепции современного естествознания

Государственное образовательное учреждение.. Высшего профессионального образования.. Тольяттинский государственный университет сервиса ТГУС..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Естественно-научная и гуманитарная культура. Научый метод
Под культурой в самом широком смысле принято понимать все то, что создано человечеством в ходе его исторического развития.Иначе говоря, культура – это совокупность созданных

Научный метод
Исследование феномена история науки непременно приводит к конкретным личностям – ученым, сделавшими открытия, изобретения, являющиеся «посредниками» в инновационной среде развития ц

Концепции строения материи и развития материального мира
Как известно, первый период становления естествознания относится к VII–IV вв. до н.э. и связан с греческой натурфилософией. В течение этого периода вырабатываются общие точки зрения

Корпускулярно-волновой дуализм
По-иному шла история развития представлений о природе света и оптических явлениях. Напомним, что Аристотель считал, что свет – это движение волн, распространяющихся в некоторой непр

Порядок и беспорядок в природе, детерминированный хаос
Обращая внимание на существующий порядок в природе, мы часто в качестве примера указываем на кристаллы, в кристаллической решетке которых строго чередуются ионы вещества (например,

Структурные уровни организации материи
В настоящее время принято единую Природу для удобства делить на три структурных уровня – микро-, макро- и мегамир. Естест­венными, хотя отчасти и субъективными, признаками деления я

Микромир
Атомная физика.Еще древние греки Левкипп и Демокрит выдвинули гениальную догадку, что вещество состоит из мельчайших частиц – атомов. Научные основы атомно-молекулярно

Макромир
От микромира к макромиру.Теория строения атома дала химии ключ к познанию сущности химических реакций и механизма образований химических соединений – более слож

Мегамир
Объектами мегамира являются тела космического масштаба – кометы, метеориты, астероиды (малые планеты), планеты, планетные пстемы, Солнечная система, звезды (нейтронные, белые и желт

Пространство и время
Пространство и время – категории, обозначающие основные фундаментальные формы существования материи. Пространство выражает порядок существования отдельных объектов, время – порядок см

Единство и многообразие свойств пространства и времени
Поскольку пространство и время неотделимы от материи, правильнее было бы говорить о пространственно-временных свойствах и отношениях материальных систем. Но при позна­нии пространства и времени уче

Принцип причинности
Классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние

Стрела времени
На существование парадокса времени было обращено внимание почти одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона вр

Пространство и время в греческой натурфилософии
Наиболее видные представители античного естествознания – Демокрит и Аристотель – высказали следующие суждения о пространстве и времени. Демокрит считал, что все природное многообразие сост

Пространство и время в специальной теории относительности (СТО)
В специальной теории относительности А. Эйнштейна выявилась взаимозависимость пространственных и временных характеристик объектов, а также их зависимость от скорости движения относительно определен

Пространство и время в общей теории относительности (ОТО)
Еще более сложную связь, по сравнению с СТО, между пространством и временем, с одной стороны, и движением и материей (массой вещества) – с другой, была установлена А. Эйнштейном в рамках созданной

Пространство и время в физике микромира
Еще более углубились представления о пространстве и времени в связи с изучением микромира квантовой механикой и квантовой теорией поля, выявившими тесную связь структуры пространства-времени с мате

Современные взгляды на пространство и время
Ранее мы выяснили, какие из свойств пространства и времени являются универсальными (всеобщими), а какие – специфическими (их всеобщность не доказана). Отнесение к специфическим хара

Специальная теория относительности
После создания электродинамики, доказавшей существование в природе еще одного вида материи – электромагнитного поля, которое математически описывается системой уравнений Максвелла,

Общая теория относительности
В СТО законы формулируются для инерциальных систем, движущихся с постоянной скоростью. В ОТО рассматриваются любые системы отсчета, в том числе и движущиеся с ускорением. Таким обра


2.6.1. Симметрия: понятие, формы и свойства Понятие симметрии. Как известно, в физике имеется целый ряд законов сохранения, например закон сохранения

Принципы симметрии и законы сохранения
Что такое симметрия? Слово это греческое и переводится как «соразмерность, пропорциональность, одинаковость в расположении частей». Часто проводятся параллели: симметрия и уравновеш

Диалектика симметрии и асимметрии
С давних времен симметрия форм, наблюдаемых в природе, производила на человека сильное впечатление. Он видел в симметрии порядок, гармонию, совершенство, вносимые всемогущим творцом

Концепции близкодействия и дальнодействия
Дальнодействие. После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие элек­трических заряженных тел, возник вопрос, почему

Фундаментальные типы взаимодействий
Согласно концепции близкодействия все взаимодействия между юлами (помимо прямого контакта между ними) осуществляются с помощью тех или иных полей (например, взаимодействие в теории

Дополнительности
Мы часто говорим о том или ином состоянии материи. Например, мы выделяем несколько агрегатных состояний вещества: твердое, жидкое, газообразное, плазма. Говорим о состояниях электромагнитного поля,

Принцип неопределенности
Используемые в квантовой механике волновые функции для описания микрочастиц дают возможность установить вероятность нахождения микрочастиц в том или ином месте пространства в соотве

Принцип дополнительности
Для описания микрообъектов Н. Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, который наиболее четко изложил в следующей форме:

Принцип суперпозиции
В физике при изучении линейных систем широко используется принцип суперпозиции. Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме рез

Динамические и статистические закономерности в природе
Рассмотрим два типа физических явлений: механическое движе­ние тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Зако

Формы энергии
Энергия (от греч.– действие, деятельность) – общая ко­личественная мера движения и взаимодействия всех видов материи, Понятие «энергия» связывает воедино все явления природы.

Закон сохранения энергии для механических процессов
Одним из наиболее фундаментальных законов природы является закон сохранения энергии, согласно которому важнейшая физическая величина – энергия – сохраняется в изолированной системе.

Всеобщий закон сохранения и превращения энергии
Изучение процесса превращения теплоты в работу и обратно и установление механического эквивалента теплоты сыграло основную роль в открытии всеобщего закона сохранения и превращения

Закон сохранения энергии в термодинамике
Закон сохранения энергии сыграл решающую роль в создании новой научной теории – термодинамики. Опираясь на этот закон, был сделан ряд открытий в области электродинамики.

Понятие энтропии
Понятие энтропии исторически возникло при рассмотрении и изучении тепловых процессов и создании термодинамики. К мо­менту зарождения термодинамики в естествознании господствовала ме

Основные космологические теории эволюции Вселенной
Учение о мегамире как едином целом и всей охваченной астроно­мическими наблюдениями области Вселенной (Метагалактике) называется космологией. Вывод

Химические концепции описания природы
Химия – наука о веществах и процессах их превращения, сопровождающие изменением состава и структуры. Основанием химии выступает проблема получе

Развитие учения о составе вещества
Демокрит иЭпикурсчитали, что все тела состоят из атомов различной величины и формы, чем и объясняли различие тел. Аристотельи Эмпедоклвидимое разнообразие те

Развитие учения о структуре молекул
При взаимодействии атомов между ними может возникнуть химическая связь, приводящая к образованию многоатомной системы – молекулы, молекулярного иона или кристалла. Химическая связь

Энергетика химических процессов и систем
Химические реакции– взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химическ

Реакционная способность веществ
Химическая кинетика – раздел химии, изучающий закономерности протекания физико-химических процессов во времени и механизмы взаимодействия на атомно-молекуляр

Химическое равновесие. Принцип Ле Шателье
Многие химические реакции протекают таким образом, что исходные вещества целиком превращаются в продукты реакции или, как говорят, реакция идет до конца. Так, например, бертолетова соль при нагрева

Развитие представлений об эволюционной химии
Эволюционная химия рассматривает вопросы эволюционного развития и совершенствования химической формы материи, в том числе в процессах ее самоорганизации до перехода в биологическую

Внутреннее строение и история образования Земли
Земля, как и другие планеты, возникла из солнечного вещества. Документальными свидетелями допланетной стадии развития вещества и ранних этапов существования Земли служат соотношения

Внутреннее строение Земли
Главными методами изучения внутренних частей нашей планеты являются, в первую очередь, геофизические наблюдения за скоростью распространения сейсмических волн, образующихся при взрывах или землетря

История геологического строения Земли
Историю геологического строения Земли принято изображать в виде последовательно появляющихся друг за другом стадий или фаз. Отсчет геологического времени ведется от начала процесса

Современные концепции развития геосферных оболочек
4.2.1. Концепция глобальной геологической эволюции Земли Разработка концепции глобальной эволюции Земли позволила представить развитие геосферных об

История формирования геосферных оболочек
Рассмотрим в свете концепции глобальной эволюции Земли историю формирования основных геосферных оболочек. Этапы развития Земли с позиций концепции глобальной геоэво

Понятие литосферы
Литосфера – внешняя твердая оболочка Земли, которая включает всю земную кору и часть верхней мантии. Это особый слой толщиной порядка 100 км. Нижняя гр

Экологический функции литосферы
Обычно выделяют четыре экологические функции литосферы: ресурсную, геодинамическую, геофизическую и геохимическую. Ресурсная функция литосферы определя

Литосфера как абиотическая среда
В литосфере происходит множество процессов (сдвиги, сели, обвалы, эрозии и др.), имеющих целый ряд неблагоприятных экологических последствий в определенных регионах планеты, а иногд

Особенности биологического уровня организации материи
Биология (от греч. «биос» – жизнь, «логос» – учение) – наука о живой природе. Биология изучает живые организмы – вирусы, бактерии, грибы, животных и растения. В

Уровни организации живой материи
Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерар­хии живого. Выделяют следующие уровни органи

Свойства живых систем
М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, пос

Химический состав, строение и воспроизведение клеток
Из 112 химических элементов Периодической системы Д.И. Менделеева в состав организмов входит более половины. Химические элементы входят в состав клеток в виде ионов или компонентов молекул неоргани

Биосфера и ее структура
Термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюсс для обозначения оболочки Земли, населяемой живыми организмами. В 20-х гг. прошлого века в трудах В.И. Вер

Функции живого вещества биосферы
Живое вещество обеспечивает биогеохимический круговорот веществ и превращение энергии в биосфере. Выделяют сле­дующие основные геохимические функции живого вещества: 1.Энергетич

Круговорот веществ в биосфере
Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения

Основные эволюционные учения
На протяжении многих веков господствовали представления о Божественном происхождении природы, о том, что виды организмов были созданы в их нынешних формах, после чего они же не изме

Микро- и макроэволюция. Факторы эволюции
Эволюционный процесс разделяют на два этапа: - микроэволюцию – возникновение новых видов; - макроэволюцию – эволюци

Направления эволюционного процесса
С момента возникновения жизни развитие живой природы шло от простого к сложному, от низкоорганизованных форм к более высоко организованным и имело прогрессивный характер. А.

Основные правила эволюции
Правило необратимости эволюции (правило Л. Долло): эволюционный процесс необратим, возврат к прежнему эволюционному состоянии, ранее осуществленному в ряду поколений предков, н

Происхождение жизни на Земле
Существует несколько гипотез о происхождении жизни на Земле. Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира приде

Механизм возникновения жизни
Возраст Земли со­ставляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад. В 1924 г. русский академик А.И. Опарин

Начальные этапы развития жизни на Земле
Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно ор

Основные этапы развития биосферы
Эон Эра Период Возраст (начало), млн. лет Органический мир

Система органического мира Земли
Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымира­ния. Биологическое

Надцарство Эукариоты
Эукариоты– од­ноклеточные или многоклеточные организмы, имеющие оформленное ядро и различные органоиды. ЦАРСТВО ГРИБЫ – подцарство Слизевики

Структура и функционирование экологических систем
Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы. Каждая из сред обитания отличается особенностями воздей

Концепции устойчивого развития
Появление на Земле около 40 тыс. лет назад человека разумного Вернадский рассматривал как естественную часть биосферы, а деятельность его – как важнейший геологический фактор. С поя

Основные генетические процессы. Биосинтез белка
Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменятьс

Основные законы генетики
Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения едино­образны. Например, при скрещивании ра

Наследственная и ненаследственная изменчивость
Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости. Выделяют ненаследственную и

Как факторы дальнейшей эволюции
Генетическая (генная)инженерия – совокупность методов конструирования лабораторным путем (in vitro) генетических структур и насле

Антропогенез
Человек – это целостное единство биологического (организменого), психического и социального уровней, которые формируются из природного и социального, наследственного и прижизненно п

Физиологические особенности человека
Физиология изучает функции живого организма, отдельных органов, систем органов, а также механизм регуляции этих функций. Человек представляет собой сложную саморегулирующую

Основные закономерности роста человека
Кривая роста человека, рост в пренатальном и постнатальном периодах, абсолютный рост, скорость роста. Пренатальный рост, общая характеристика пренатального роста, из­менение скорости роста от оплод

Здоровье человека
По определению Всемирной организации здравоохранения (ВОЗ), здоровье человека –это состояние полного физического, душевного и социального благополучия. Здоро

Группировка факторов риска и их значение для здоровья
Группы факторов риска Факторы риска Значение для здоровья, % (для России) Биологические факторы

Эмоции. Творчество
Эмоции представляют собой реакции животных и человека на воздействие внешних и внутренних раздражителей, имеющие ярко выраженную субъективную окраску и охватывающие все виды чу

Работоспособность
Работоспособность – это способность к выполнению работы. С физиологической точки зрения работоспособность определяет возможности организма при выполнении работы, к поддержанию структуры и энергозап

Принципы мудрого отношения к жизни
Физические нагрузки успокаивают и помогают переносить душевные травмы. Умственное перенапряжение, неудачи, неуверенности, бесцельное существование – самые вредоносные стрессоры. Среди всех работ, с

Противоречия современной цивилизации
Сто пятьдесят лет тому назад в биосфере сложилось определенное равновесие. Человек использовал относительно небольшую часть ресурсов природы, перерабатывал ее для обеспечения своих

Понятие биоэтики и ее принципы
Для того чтобы предупредить развитие такого пессимистического сценария эволюции биосферы, в последние годы набирает силу новая наука –биоэтика, находящаяся на стыке биологии

Медицинская биоэтика
Одной из очень важных проблем биоэтики является также проблема «человек–медицина». Она включает, например, такие вопросы, как целесообразность поддержания жизни смертельно больного

Принципы поведения животных
Биоэтику следует рассматривать как естественное обоснование человеческой морали. Когда мы, люди, говорим «мы все люди и ничего человеческое нам не чуждо» на самом деле наше поведение похоже

Биосфера и космические циклы
Биосфера – живая открытая система. Она обменивается энергией и веществом с внешним миром. В данном случае внешний мир – это безбрежное космическое пространство. Извне на Зе

Биосфера и ноосфера
Факторы эволюции и этапы развития биосферы.Эволюция биосферы на протяжении большей части ее истории осуществлялась под влиянием двух главных факторов: 1) естественных

Современное естествознание и экология
Экология вызывает в настоящее время особый интерес как в различных естественно-научных дисциплинах, так и в гуманитарном знании. Интегрирующее направление в этой науке связано с исс

Экологическая философия
Задача современной экологической науки – искать такие способы воздействия на окружающую среду, которые помогли бы предотвратить катастрофические последствия и практическое использов

Планетарное мышление
Когда наступает время для определенной идеи, системы взглядов, то они начинают проявляться самыми различными способами, в широком многообразии форм и видов. Об этом явлении часто го

Ноосфера
Под ноосферой понимается сфера разума, но разработано это понятие еще совершенно недостаточно. Однако точка зрения, согласно которой ноосфера представляет собой одно из природных ра


В последние годы работами ряда авторов, и, прежде всего, И. Пригожина и П. Гленсдорфа, была развита термодинамика сильно неравновесных систем, в которых связь между термодинамически

Пространственные диссипативные структуры
Простейшим примером пространственныx структур являются ячейки Бенара, обнаруженные им в 1900 г. Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней п

Временные диссипативные структуры
Примером временной диссипативной структуры является химическая система, в которой протекает так называемая реакция Белоусова–Жаботинского. Если система отклонилась от

Химическая основа морфогенеза
В 1952 г. вышла работа А. Тьюринга «О химической основе морфогенеза». Морфогенезом называется возникновение и развитие сложной структуры живого

Самоорганизация в живой природе
Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы. Если в нек

Самоорганизация в неравновесных системах
Рассмотрим простую симметричную бифуркацию, приведенную на рис. 5. Выясним, как возникает самоорганизация и какие процессы происходят, когда ее порог оказывается превзойденным.

Типы процессов самоорганизации
Различают три типа процессов самоорганизации: 1)процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня но

Принципы универсального эволюционизма
Принцип универсального эволюционизма одна из доминирующих современных концепций в науке. Сформировавшийся вначале как результат обобщения естественно-научных знаний, он стал постепе

Самоорганизация в микромире. Формирование элементного состава вещества материи
На основе достижений ядерной физики в первой половине прошлого века удалось понять механизм образования химических элементов в природе. В 1946–1948 гг. американский физик Д. Гамов р

Химическая эволюция на молекулярном уровне
До возникновения жизни на Земле в течение длительного времени, продолжавшегося около двух миллиардов лет, происходил химическая эволюция неживой (косной материи). В связи с существованием

Самоорганизация в живой и неживой природе
На основе данных археологии, палеонтологии и антропологии Ч. Дарвин, как известно, доказал, что все многообразие живых организмов сформировалось в процессе длительной эволюции из бо

Самоорганизация Вселенной
Еще менее ста лет назад в науке господствовала точка зрения об однородной, стационарной, бесконечной во времени и в пространстве Вселенной. Однако после создания А. Эйнштейном общей теории относите

Концепции эволюционного естествознания
Краткий анализ процессов, протекающих в микро-, макро- и мегамире, позволяет говорить о том, что на всех уровнях организации материи доминирующими являются эволюционные процессы. Эт

Структурность и целостность в природе. Фундаментальность понятия целостности
Важнейшим атрибутами природы является структурность и целостность. Они выражают упорядоченность ее существования и те конкретные формы, в которых она проявляется. Структура п

Принципы целостности современного естествознания
Следует отметить, что в настоящее время бурно развивается философия науки, которая существенно отличается от естествознания и по своим целям, и по методам исследования. Философия на

Самоорганизация в природе в терминах параметров порядка
Система может быть определена как комплекс взаимодействующих элементов (определение Берталанфи). Систему можно определить как любую совокупность переменных, которую

Методология постижения открытого нелинейного мира
XXIвек характеризуется бурным экспоненциальным ростом научных знаний. Человечество знает и умеет значительно больше, чем может осмысленно использовать. Это породило серьезную про­бл

Основные черты современного естествознания
Выделим несколько характерных черт современного естествознания. 1. Развитие естествознания в XVII-XVIII вв. и вплоть до конца XIX в. происходило под подавляющим превосходст

И синергетическая среда в постижении природы
Синергетический подход к познанию, точнее к постижению Природы, расставляет точки над и в том смысле, что становится более понятным, что знания не приобретают как вещь, ими овладева

Принципы нелинейного образа мира
Первая научная картина мира была построена И. Ньютоном, несмотря на внутреннюю парадоксальность, она оказа­лась удивительно плодотворной, на долгие годы, предопределив самодвижение

От автоколебаний к самоорганизации
Для пояснения поведения открытых систем и их постижения удобным является использование аппарата нелинейных колебательных систем, разработанного в радиоэлектронике и связи, на фазовы

Формирование инновационной культуры
Инновационная культура – это знания, умения и опыт целенаправленной подготовки, комплексного внедрения и всестороннего освоения новшеств в различных областях человеческой жиз

Глоссарий
Абиогенный – абиогенная эволюция, абиогенное вещество – неживого, небиологического происхождения. Абиогенез – самопроизвольное зарождение жизни, в

Французские генетики обнаружили у мышей необычный механизм передачи наследственной информации, не связанный с геномной ДНК. Иногда у мышат могут проявляться признаки, характерные для их родителей, даже в том случае, если гены, определяющие эти признаки, у мышат отсутствуют. По-видимому, врожденные качества определяются не только унаследованными от родителей молекулами ДНК — общепризнанными носителями наследственной информации, — но и другими молекулами, прежде всего РНК, которые являются не только «результатами прочтения» записанной в ДНК информации, но и активно влияют на сам процесс «чтения», заставляя клетку «прочитывать» в генах то, чего там нет.

Ген Kit кодирует многофункциональный белок, влияющий, помимо прочего, на образование темного пигмента меланина. В свое время генетики, изучавшие работу этого гена у мышей, искусственно создали неработающий вариант гена, вставив в него большой «лишний» кусок ДНК. У мышей, гетерозиготных по этой мутации (то есть имеющих одну нормальную копию гена и одну измененную, Kit +/-) лапки и кончик хвоста остаются неокрашенными (белыми). Гомозиготы (обладатели двух испорченных копий гена, Kit -/- ) умирают вскоре после рождения.

Французские генетики из Университета Ниццы , скрещивая между собой гетерозигот Kit +/- , столкнулись с нарушением законов классической генетики. Согласно этим законам, четверть потомства должна была сразу погибать (генотип Kit -/- ), половина — иметь белые лапы и хвост (генотип Kit +/- ), и четверть — иметь нормальную окраску (генотип Kit +/+ ). Вместо этого из 57 выживших мышат, полученных от восьми скрещиваний, только три оказались нормально окрашенными, а остальные 54 имели белые лапы и хвост.

Генетический анализ показал, что из 54 белохвостых мышат 24 имеют генотип Kit +/+ , то есть у них попросту нет «гена белохвостости». Эти мыши обязаны были иметь нормальную окраску! Получалось, что мыши унаследовали от родителей некий врожденный признак, не унаследовав генов, ответственных за формирование этого признака.

Результаты нуждались в проверке. Ученые стали скрещивать гетерозигот Kit +/- с нормально окрашенными мышами дикого типа Kit +/+ . В этом случае половина потомства получает генотип Kit +/+ , половина — Kit +/- . То есть ожидалось распределение белохвостых и обычных мышат 1:1. Вместо этого опять почти все мышата оказались белохвостыми, хотя многие из них имели генотип Kit +/+ .

Если скрестить этих аномальных мышей (белохвостых, но не имеющих «гена белохвостости») друг с другом, то потомство их тоже оказывается белохвостым. Правда, в последующих поколениях проявления данного признака слабеют и в конце концов сходят на нет — фенотип (то есть строение организма, физические признаки) наконец приходит в соответствие с генотипом.

Таким образом, оказалось, что если хотя бы один из родителей мышонка (не важно, отец или мать) — белохвостый, то и мышонок с большой вероятностью будет белохвостым независимо от того, есть ли «ген белохвостости» у него самого.

Стало очевидно, что носителем наследственной информации в данном случае являются не гены и не ДНК. Что же тогда? Естественно, подозрение пало в первую очередь на РНК — второй класс «информационных» биополимеров живой клетки. Как известно, РНК выполняет роль посредника между генами (участками ДНК) и белками (которые определяют большинство фенотипических признаков). Наследственная информация, записанная в виде последовательности нуклеотидов в молекуле ДНК, сначала «транскрибируется» — переписывается в последовательность нуклеотидов РНК. Получившиеся таким путем молекулы РНК («транскрипты») подвергаются сложной обработке. Из них вырезаются лишние куски (интроны), к ним пришиваются особые сигнальные участки и т. д. В результате получается «зрелая матричная РНК», которая используется как инструкция (матрица) для синтеза белка.

Ученые предположили, что белохвостость мышонка с генотипом Kit +/+ может быть вызвана тем, что в оплодотворенную яйцеклетку, из которой он развился, попала родительская РНК, считанная с мутантной копии гена Kit . Хотя у самого мышонка обе копии гена Kit — нормальные, присутствие «мутантной» РНК может как-то повлиять на их работу, в особенности на процесс транскрипции (считывания) и последующих модификаций РНК.

Это предположение полностью подтвердилось. Исследователи обнаружили, что у гетерозигот Kit +/- с мутантной копии гена Kit считывается «мутантная» РНК, которая в дальнейшем распадается на фрагменты разной величины. Если выделить эти фрагменты и ввести их в контрольную оплодотворенную яйцеклетку (полученную от диких серохвостых родителей), из яйцеклетки развивается белохвостый мышонок с генотипом Kit +/+ . По-видимому, эти фрагменты РНК не только регулируют прочтение (транскрипцию) гена Kit , что приводит к снижению концентрации белка Kit в клетках, но и каким-то образом самовоспроизводятся, иначе они не могли бы передаваться в ряду поколений. Как же они могут самовоспроизводиться? Ведь изначально они были «считаны» с испорченной копии гена, которая была у родителей, но которой нет у потомства!

Механизм самовоспроизведения этих РНК пока неизвестен. По-видимому, они модифицируют процесс транскрипции «здорового» гена Kit или последующую обработку считанных с него РНК, так что в результате считанная со «здорового» гена РНК оказывается «мутантной». Это несколько напоминает механизм распространения так называемых прионных заболеваний («коровье бешенство»): появление «неправильно свернутого» белка стимулирует неправильное сворачивание других белковых молекул, и в результате возникает своеобразная цепная реакция формирования «мутантных» белков, хотя ген, кодирующий данный белок, при этом не изменяется.

Ученые также обнаружили, что в сперматозоидах белохвостых мышей Kit +/- резко повышено содержание РНК по сравнению с нормальными сперматозоидами. Это свидетельствует об активной транскрипции ряда генов, в том числе и гена Kit . В норме в сперматозоидах большинство генов «молчит» и РНК почти не образуется.

Надо сказать, что это не первый случай, когда у живых организмов обнаружена передача наследственной информации не через нуклеотидные последовательности ДНК, а иными способами. Существует даже специальный термин для таких явлений — эпигенетическое («надгенетическое») наследование. Роль РНК в эпигенетическом наследовании у высших животных удалось доказать впервые. Нечто подобное недавно было обнаружено у высших растений (Lolle et al., 2005. Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis // Nature . V. 434. P. 505—-509).

Полученный французскими генетиками сенсационный результат, наряду с некоторыми другими открытиями последних лет, показывает, что классические представления о природе «наследственной информации» и механизмах ее «прочтения» слишком упрощенные. В действительности все гораздо сложнее. Приходится признать, что аналогии между живыми организмами и искусственными информационными системами (например, компьютерами), вошедшие в моду в конце XX века, в значительной степени неправомочны. В отличие от компьютера, в живых системах так называемая «информация», ее носители, а также «устройства» для ее прочтения и реализации оказываются слиты воедино и практически неразделимы. Например, РНК оказывается не только «результатом прочтения» генетического кода и средством передачи информации от ДНК к системе синтеза белка, но и активным участником и регулятором самого процесса «прочтения», способным менять смысл читаемых «сообщений». Не случайно некоторые ведущие теоретики в настоящее время ставят под сомнение саму применимость понятия «информация» к последовательностям нуклеотидов ДНК и РНК.