Рассчитываем и изготавливаем солнечные батареи своими руками. Солнечная батарея своими руками из подручных средств и материалов в домашних условиях – как собрать и изготовить солнечную батарею из диодов, транзисторов и фольги?




Не каждого хозяина, который решил сэкономить на коммунальных платежах, используя альтернативную энергетику, устраивают высокие цены на современные солнечные панели. Лишить его такого недовольства может самодельная солнечная батарея. Ее можно назвать полноценной заменой выпущенных известными производителями солнечных панелей, ведь по такому показателю, как мощность, она ничем не уступает.

Основные этапы изготовления

Согласно большинству проектов они таковы:

  1. Сборка рамы.
  2. Изготовление подложки.
  3. Подготовка светочувствительных элементов и их пайка.
  4. Закрепление пластин на подложке.
  5. Подключение диодов и всех проводов.
  6. Герметизация.

Выбор светочувствительных пластин

Они являются главным элементом будущей устанавливаемой на . Именно от их особенностей будет зависеть мощность всей сделанной в домашних условиях установки. Как и в промышленных вариантах, так и в домашних можно установить:

  1. Монокристаллические пластины.
  2. Поликристаллические пластины.
  3. Аморфный кристалл.

Первые способны создать наибольшее количество электрического тока. Однако такая их производительность проявляется в условиях отличного освещения. Если же интенсивность освещения становится меньше, их эффективность падает. Более продуктивной в таких условиях становится панель с поликристаллическими пластинами. Она при плохом освещении сохраняет привычный для себя небольшой КПД (согласно инструкции одного из производителей он достигает 7-9%). Монокристаллические же радуют КПД, равным 13%.

Что касается аморфного кремния , то он значительно отстает в производительности, однако из-за того, что является гибким и неуязвимым к ударам, он самый дорогой. Однозначно он не подходит, ведь солнечные батареи своими руками хочется собрать для того, чтобы сэкономить.

Несколько неприятным фактом является то, что даже самые хорошие светочувствительные элементы также стоят немалых денег. Однако это касается тех пластин, в которых нет ни одного дефекта. Дефектные же изделия имеют чуть меньшую мощность и стоят значительно дешевле . Производители же не могут использовать их для своей дорогой продукции. Именно такие фотоэлементы стоит использовать для своего, создаваемого в домашних условиях, источника тока.

На рынке, а точнее в наиболее популярных мировых интернет-магазинах (именно там есть наибольшее количество предложений по ), продают разные по размерам фотопластинки. Для своей батареи нужно покупать светочувствительные элементы с одинаковыми размерами. При покупке, а еще лучше, при разработке проекта стоит учитывать такие нюансы:

  1. Фотоэлементы различных размеров генерируют ток с разной силой . Чем больше размер, тем больше сила тока. При этом она будет ограниченной силой тока наименьшего элемента. И неважно, что на панели размещается пластина с вдвое большими размерами. Панель будет выдавать электрический ток с той силой, которую имеет ток, созданный наименьшим элементом. Поэтому крупные элементы будут немного «отдыхать».
  2. Напряжение от размеров не зависит . Оно зависит от типа элементов. Конечно, его можно нарастить, подключив пластины последовательно.
  3. Мощность всей установки для частного дома или дачи является произведением напряжения и силы тока .

Расчет характеристик панели

Солнечная панель должна генерировать такой электрический ток, который может легко заряжать 12-вольтные батареи. Для их подзарядки необходимым является ток с большим напряжением. Очень хорошо, когда ток, созданный солнечной батарей, имеет напряжение 18 В.

Конечно, ни один из небольших светочувствительных элементов не выдает такого напряжения. Часто эта характеристика является менее 1 В. Поэтому перед покупкой, а еще лучше во время создания проекта батареи для частного дома следует узнать характеристики тока, который может создать один фотоэлемент. Часто продавцы указывают эти цифры.

Например, одна пластина дает ток с напряжением 0,5 В. Чтобы получить на выходе солнечной панели 18 В, нужно выполнить последовательное подключение 36 фотоэлементов. В таком случае общее напряжение является равным сумме напряжений токов, полученных на всех светочувствительных пластинах. Сила тока при последовательном подключении не изменится. Поэтому она будет равна показателю, который дает наименьший по размерам фотоэлемент.

Если нужно увеличить силу тока , то придется устанавливать дополнительное количество пластин и подключать их параллельно. Общая сила тока будет суммой сил токов, созданных каждой параллельно подключенной пластиной.

Подытоживая вышесказанное, расчет солнечных батарей, которые будут стоять на крыше дачи или частного дома, делают так:

  1. , которых будет «кормить» солнечная батарея.
  2. Определяют возможности наименьшего по размерам фотоэлемента. Это можно узнать как у продавцов, так и самостоятельно, поставив его на свет и, измерив напряжение, а также силу тока.
  3. Определяют напряжение и силу тока самой панели. Например, 18 В и 3 А. Эти величины дадут возможность узнать мощность панелей. Она будет составлять 18х3 = 54 Вт. Для несколько часовой работы светодиодных ламп этого хватит.
  4. Сравнивают мощность источника света с мощностью электроприборов. При необходимости вносят коррективы в основные параметры тока. То есть меняют мощность, а вместе с ней напряжение или силу тока. Высчитывают нужное количество панелей.
  5. Рассчитывают нужное для одной панели число фотоэлементов. Оно должно быть таким, чтобы дать электроэнергию с необходимыми характеристиками. При этом определяют количество пластин в одном ряду и учитывают способ их подключения.

Большинство проектов, которые касаются того, как , предусматривают изготовление изделия с площадью 1 м². Часто мощность такой батареи составляет около 120 Вт. 10 панелей дадут более 1 кВт. Если планируется полностью обеспечивать свой дом бесплатной электрической энергией, то следует разрабатывать проект, предусматривающий столько панелей, общая площадь которых превышает 20 кв. м. При размещении их на солнечной стороне и в местах, где интенсивность освещения очень высока, они способы перекрыть месячную потребность в электроэнергии величиной 300 кВт. Даже для среднего дома эта цифра является большой.

Изготовление каркаса солнечной панели

Его можно собрать из любых подручных материалов, среди которых могут быть алюминиевые пивные банки или рулоны фольги. Выбрасывать такие банки не стоит, ведь из них можно собрать хороший воздушный солнечный коллектор. Он будет накапливать тепло солнца и передавать его из пивных банок в середину дома.

Материалами для изготовления каркаса могут быть:

  1. Дерево и фанера, а также ДВП.
  2. Алюминиевые уголки.
  3. Стекло.
  4. Оргстекло.
  5. Поликарбонат.
  6. Плексиглас.
  7. Минеральное стекло.

Из материалов, представленных в первых двух пунктах, изготавливают раму.

Деревянный каркас

Если проект предусматривает использование дерева и ДСП, то процесс изготовления рамы в домашних условиях включает следующие этапы:

  1. Разрезание деревянных реек с толщиной 2 см на отрезки. Их длина зависит от того, какие размеры будет иметь рама. Их определяют, смотря на длину и ширину рядов, расположенных на расстоянии 5 мм фотопластин.
  2. Сборка реек в рамку и скрепление их шурупами, которые до этого могли лежать возле двух пустых пивных банок. Посередине рамки можно сделать 1-2 перекладины. Их присутствие зависит от желания. Правда, в таком случае придется разбивать светочувствительные пластины на 2-3 группы.
  3. Вырезание одного большого или несколько малых листов фанеры с толщиной, равной 10 мм.
  4. Закрепление на рамке вырезанных кусков фанеры.
  5. Сверление в нижнем и среднем бортике каркаса малых отверстий. На одном бортике делают до 5 отверстий. Они необходимы для выравнивания давления во время нагревания будущей солнечной панели, а также для удаления влаги.
  6. Вырезание из ДСП подложки для фотопластин . Согласно проекту она должна размещаться в середине каркаса. Поэтому ее размеры должны быть меньше ширины и длины каркаса на величину, равную толщине бортиков, умноженной на 2. Подложку в каркасе еще не фиксируют. Ее ставят возле других подручных материалов, среди которых могут быть адаптированы для нужд пивные банки или алюминиевая фольга.
  7. Покраска всех элементов светлой краской . Ее нужно наносить несколькими слоями. Краска должна быть специальной. В первую очередь, она не должна выгорать на солнце. Ее цвет должен быть светлым. Оптимальным является белый. Это потому, что он отражает лучи, часть из которых смогут уловить полупроводниковые пластины.

Прозрачная часть в виде стекла или аналогов фиксируется в самом конце.

Здесь стоит отметить, что для того, чтобы сделать солнечную батарею своими руками лучше всего использовать минеральное стекло. Оно прекрасно поглощает инфракрасные лучи, защищая этим панель от нагревания, и способно противостоять ударам. Однако оно дорогое, о чем часто говорят в видео. Худший вариант – поликарбонат и стекло. Последнее является тяжелым и не выдерживает ударов, как и пивные банки.

Алюминиевый каркас

Если проект предусматривает использование алюминиевых уголков 35 мм , то раму в домашних условиях делают так:

  1. Разрезают уголки на отрезки нужной длины. При этом противоположные края одной стороны срезают под углом 45°.
  2. Возле концов несрезанных сторон сверлят отверстия. Аналогичные делают по середине и возле концов сторон со срезанными углами.
  3. Складывают четыре уголка так, чтобы они создали раму.
  4. Прикладывают уголки длиной 35 мм и размерами 50х50 мм к углам рамы, фиксируют их метизами.
  5. На внутреннюю поверхность алюминиевых уголков наносят силиконовый герметик.
  6. Размещают стекло на герметике и слегка прижимают. Ждут полного высыхания герметика. Тем временем можно узнать секреты создания солнечного коллектора из пивных банок, посмотрев разные видео и опубликованные в интернете проекты.
  7. Фиксируют стекло метизами, которые могут лежать возле стеклянных банок. Их надо установить по углам стекла и посередине каждой стороны.
  8. Очищают стекло от пыли.

Пайка светочувствительных пластин

Эта работа требует максимальной осторожности, поскольку светочувствительные элементы являются очень хрупкими. Небольшая нагрузка приводит к их разрушению.

Пластины могут иметь припаянные проводники, а могут и не иметь их. Первый вариант является лучшим, поскольку нужно будет только делать пайку элементов. Второй вариант требует пайки проводников в домашних условиях к пластинам из полупроводника. Он проводится так:

  1. Нарезают плоский проводник на тоненькие полоски. Их длина должна быть немного меньше двойной величины ширины пластины.
  2. Промазывают безкислотным флюсом ту часть лицевой стороны пластины, которая будет контактировать с проводником.
  3. Прикладывают проводник и выступающий его конец фиксируют тяжелым предметом. Другой конец паяют. Паяльник должен иметь мощность 60-80 Вт. Припой используют оловянный. Лудить контакт надо только тогда, когда шина плохо припаивается.

Согласно разным видео спайка элементов в единую систему предусматривает:

  1. Переворачивание пластин так, чтобы тыльная сторона оказалась вверху.
  2. Размещение на подложке фотоэлементов. Их ставят в нужной последовательности на одинаковом расстоянии (5 мм) друг от друга. Лучше всего это делать по ранее нарисованной разметке.
  3. Далее к контактам на нижней стороне припаивают провода соседней пластины. Так происходит последовательное соединение фотоэлементов.
  4. После, согласно проекту, на центр тыльной стороны каждой пластины наносят герметик. Спаянный ряд переворачивают, снова выкладывают по разметке и слегка прижимают.
  5. Чтобы обеспечить последовательное соединение рядов, четные ряды разворачивают на 180°.
  6. Ряды припаивают к двум шинам, размещенным на их концах. При этом к одной шине припаивают контакты «+» нечетных рядов и контакты «-» четных. Контакт «-» находится на лицевой стороне, контакт «+» — на тыльной. К другой шине паяют контакты «-» нечетных рядов и контакты «+» четных.

Использование альтернативных источников получения энергии на сегодня набирает все больше популярности в обществе. Добывание солнечной энергии совершенно бесплатно и доступно всем. И если экология и экономия являются для вас сопутствующими показателями для жизни, то вниманию предлагается статья, как сделать солнечную батарею своими руками.

  • Принцип работы
  • Расчеты и подготовка

Принцип работы

Стоит согласиться, что получать совершенно бесплатно электроэнергию, не просто мечта, а реальность. Приблизиться к мечте в виде электрификации частного дома посредством использования альтернативного источника получения энергии очень просто. Нужно предпринять всего лишь несколько действий, затраты на которые не превысят недельной прибыли семьи.

Но прежде, как сделается установка, стоит узнать, как работает созданная солнечная батарея своими руками из подручных материалов. Какие главные элементы конструкции, как взаимодействуют между собой и для чего они предназначены. По сути, устройство состоит всего из трех необходимых элементов:

    Конструктор, состоящий из небольших относительно размеров элементов. Задача солнечной батареи преобразовать световой эффект в поток электронов положительно и отрицательно заряженных. Электрический ток большого показателя напряжения типовые элементы вырабатывать не в состоянии.

    Нормальный показатель генерирования одного элемента – 0.5В. Задача солнечного коллектора выработать электрический ток напряжением в 18В. Данного показателя вполне достаточно для зарядки 12В аккумуляторной батареи. Так что о генерировании показателя напряжения 220В говорить не приходится. Электростанция типового показателя выработки энергии будет занимать огромный объем площади.

    1. Аккумуляторы.


    Данные элементы в конструкции используются для обеспечения частного дома либо дачи необходимым количеством электроэнергии. Заряда одной батареи надолго не хватит. Но все зависит от мощности и количества подключенных источников потребления электрической энергии.

    По мере необходимости, количество аккумуляторов со временем допустимо увеличивать. При этом единовременно необходимо дополнять систему солнечными коллекторами. В одной действующей системе может использоваться более 10-ти аккумуляторов.


      Инверторы в домашних условиях преобразовывают добытый ток низкого напряжения в электрическую энергию высокого показателя напряжения. Типовое устройство можно отыскать в свободной продаже. При этом, стоит обращать внимание на характеристики приобретаемого инвертора: выходная мощность устройства не должна быть меньше 4кВт. Данной мощности хватит для энергоснабжения дачи либо загородного дома.

      Расчеты и подготовка

      Прежде, как перейти к технологии изготовления солнечной батареи своими руками, стоит определиться с необходимыми параметрами. Рекомендовано определить величину нагрузки, рассчитываемую на источники будущего потребления энергии. Зачастую известны два параметра:

      Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

      • какой показатель напряжения нужен для определенного потребителя электроэнергии;
      • какой величины ток необходимо обеспечить при этом.

      Произведение двух известных параметров и выказывает потребляемый объем нагрузки мощности.

      Изготавливается самодельная солнечная батарея из специальных элементов, заряжающихся от светового воздействия. Типовые элементы установлены во многих калькуляторах. Допустимо отдельно приобрести новые солнечные составляющие, но стоимость будет равна готовой батареи в сборе. Можно отыскать работоспособные использованные составные фотоэлементы на многих аукционах, ибо «с рук».

      Солнечные элементы воссоединяются между собой проводниками следующим образом:

      • выкладываются ячейки на ровной поверхности;
      • проводник аккуратно укладывается на ячейки;
      • на место будущего сращивания проводника и элемента наносится припой и паяльная кислота;
      • далее проводник аккуратно припаивается без нажима.

      Корпус для спаянных фотоэлементов с проводниками для частного использования может изготавливаться из стекла (оргстекла) в раме из фанеры, деревянных брусков и ДВП:

      1. Из предварительно расчерченной фанеры, вырезается днище и обрамляется по периметру подготовленными брусками сечением до 25мм. Для естественной вентиляции во избежание перегрева элементов в работе в брусках насверливаются отверстия d-10мм (шаг до 20см).
      2. Из ДВП — подложка для фотоэлементов так же снабжается насверленными отверстиями для вентиляции.
      3. Крышка корпуса вырезается из оргстекла и закрепляется на поверхности саморезами.

      Панель без затрат в домашних условиях

      Солнечную панель допустимо изготовить в домашних условиях без приобретения фотоэлементов. Самодельная солнечная батарея из диодов либо транзисторов, конечно, не обеспечит энергией все потребности дома. Тем не менее, батарея из транзисторов с легкость сможет обеспечить бесперебойную работу мелкой домашней электроники.

      Собрать устройство можно из старых транзисторов типа «П» либо «КТ» в домашних условиях. В начале аккуратно спиливается верхняя часть транзисторов для свободного попадания света на р-n-переход. Верхняя часть транзистора типа «П» продувается после высыпанного порошка. Для использования фотоэлементов необходимо воссоединить ячейки в блоки (параллельное соединение). Крепление ячеек транзисторов воспроизводится посредством навесного закрепления на текстолитовой подложке.

      Диоды (типа Д223Б) не стоит разбирать. Со стеклянной поверхности корпуса снимается (ацетоном) краска. Впаиваются диоды в подложку в вертикальном расположении, что придает больший эффект площади освещенности элемента.

      Солнечная панель из простых алюминиевых банок

      Невероятно практичная конструкция гелионагревателей создается из пивных банок. Стоит всего лишь набрать необходимое количество опустошенных банок. Материал пивных банок должен быть алюминиевым.

      Лучше не использовать жестяные пивные банки. Материал сильно подвержен коррозии и наделен низким показателем теплообмена.

      Сборка банок в единую систему выглядит следующим образом:

      1. Подготовка банок. Каждая банка промывается, дно пивных банок пробивается для потока воздуха в целях сбора тепла.
      2. Производится обезжиривание поверхности банок.
      3. Подготовленные банки склеиваются друг на друга, как конструктор.

      Каркас под теплообменник нужно изготовить из основы, деревянной рамы и оргстекла для лицевой отделки. Подложку основы лучше сделать из фольги. Ведь, как известно, установка подложки из фольги повышает светоотражающие качества основы.

      Аккумулирование природного солнечного света является полезным действом, что касается экологии. К тому же производство солнечного света совершенно бесплатно и доступно на любом открытом участке дачи. И к тому же, такая приятная экономия денежных средств вас приятно удивит.

      Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею можно сделать и установить своими руками.

      Что представляет собой солнечная батарея и для чего она используется?

      Солнечная батарея - это устройство, принцип работы которого основан на способности фотоэлементов преобразовывать энергию солнца в электричество. Эти преобразователи соединены между собой в общую систему. Получаемый электрический ток накапливается в специальных устройствах - аккумуляторах.

      Чем больше площадь панелей, тем больше электрической энергии можно получить

      Мощность солнечной батареи зависит от размера поля из фотоэлементов. Но это не означает, что только большие площади способны воспроизвести требуемое количество электроэнергии. Например, всем знакомые калькуляторы могут использовать портативные солнечные батареи, которые вмонтированы в их корпус.

      Преимущества и недостатки

      К преимуществам солнечной батареи относятся:

      • простота монтажа и обслуживания;
      • отсутствие вреда для окружающей среды;
      • небольшая масса панелей;
      • бесшумная работа;
      • независящие от распределительной сети поставки электрической энергии;
      • неподвижность элементов конструкции;
      • небольшие денежные затраты на изготовление;
      • долгий срок эксплуатации.

      В число недостатков солнечной батареи входят:

      • трудоёмкость процесса изготовления;
      • бесполезность в тёмное время суток;
      • потребность в большой площади для установки;
      • восприимчивость к загрязнениям.

      Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.

      Инструменты и материалы

      Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.

      Для изготовления солнечной батареи понадобятся:

      • фотоэлементы (для создания гелиопанели);
      • набор специальных проводников (для соединения фотоэлементов);
      • алюминиевые уголки (для корпуса);
      • диоды Шотке;
      • крепёжные метизы;
      • винты для крепежа;
      • лист поликарбоната (прозрачный);
      • силиконовый герметик;
      • паяльник.

      Выбор фотоэлементов

      Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

      Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

      Важная информация: Желательно приобретать фотоэлементы у одного производителя, так как ячейки разных марок могут иметь существенные различия, что сказывается на эффективности работы и процессе сборки, а также приводит к более высоким затратам энергии при эксплуатации.

      При выборе фотоэлементов необходимо обратить внимание на следующее:

      • чем больше ячейка, тем большее количество энергии она производит;
      • элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).

      Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

      Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.



      Поли- и монокристаллические панели легко отличить даже на первый взгляд

      Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой - это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

      Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

      Инструкция по изготовлению

      Процесс изготовления солнечной батареи состоит из нескольких этапов:

      1. Подготовка фотоэлементов и пайка проводников.
      2. Создание корпуса.
      3. Сборка элементов и герметизация.

      Подготовка фотоэлементов и пайка проводников

      На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

      С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.



      Качество пайки является главным требованием для эффективной работы солнечной батареи

      Важная информация: Желательно выполнять процесс пайки на ровной твёрдой поверхности.

      Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

      Важная информация: Независимо от того, какой вид подключения вы выбрали, необходимо предусмотреть шунтирующие диоды, которые устанавливаются на клемме «плюс». Идеально подходят диоды Шорке. Они препятствуют разрядке устройства ночью.

      Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.



      Проверка устройства выполняется на солнечной стороне

      Как собрать корпус

      • Подготовить уголки из алюминия с невысокими бортиками.
      • Для метизов предварительно выполняются отверстия.
      • Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи. Важно обратить внимание на отсутствие незаполненных мест.
      • После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
      • Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.


      Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

      Важная информация: Кроме поликарбоната можно использовать оргстекло или антибликовое стекло.

      Сборка элементов и герметизация

      • Очистите прозрачный материал от загрязнений.
      • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
      • На каждый фотоэлемент нанесите монтажный силикон.


      Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью
      • После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.


      Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

      Видео: Изготовление солнечной батареи своими руками в домашних условиях

      Правила установки

      Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:

      1. Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
      2. При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
      3. Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
      4. Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.

      Изготовление устройства из подручных средств

      На сегодняшний день умельцами были разработаны способы создания солнечных батарей из подручных материалов, но оправдана ли такая экономия?

      Использование старых транзисторов

      Для изготовления солнечной батареи можно использовать старые транзисторы. Для этого срезают их крышки, зафиксировав приборы в тисках за ободок. Затем выполняется измерение напряжения под воздействием света. Необходимо определить его на всех выводах прибора с целью обнаружения максимальных значений. Напряжение зависит от мощности транзистора, а также от габаритов кристалла.



      Срезать крышку транзистора нужно аккуратно, иначе можно повредить тонкие провода, которые подведены к полупроводниковому кристаллу

      После этого можно приступить к изготовлению солнечной батареи. Используя пять транзисторов и, соединив их последовательно, можно получить устройство достаточной для обеспечения работы калькулятора мощности. Каркас собирается из листового пластика. Необходимо просверлить в нём отверстия, нужные для вывода транзистора. Калькулятор на основе такой солнечной батареи работает стабильно, однако нужно, чтобы он находился не дальше 30 см от источника света. Для лучших результатов целесообразно использовать вторую цепочку транзисторов.

      Применение диодов

      Для сбора солнечной батареи понадобится много диодов. Кроме того, используется плата для подложки. В процессе изготовления применяется паяльник.

      Сначала нужно открыть внутренний кристалл, чтобы на него попадали лучи солнца. Для этого верхушка диода срезается и снимается. Нижнюю часть, где находится кристалл, необходимо подогреть над газовой плитой около 20 секунд. Когда расплавится припой кристалла, он легко снимется пинцетом. Аналогичная манипуляция проводится с каждым диодом. Затем кристаллы припаиваются к плате.



      Элементы солнечной батареи из диодов соединяются между собой с помощью тонких медных проводов

      Для получения 2–4 В достаточно 5 блоков, состоящих из пяти кристаллов, спаянных последовательно. Блоки размещаются между собой параллельно.

      Устройство из листов меди

      Чтобы изготовить солнечную батарею из листов меди, потребуется:

      • сами медные листы;
      • два зажима «крокодил»;
      • микроамперметр высокой чувствительности;
      • электрическая плита (не менее 1000 Вт);
      • пластиковая бутылка с обрезанным верхом;
      • две ложки поваренной соли;
      • вода;
      • наждачная бумага;
      • ножницы по листовому металлу.

      Порядок действий:

      1. Сначала отрежьте кусок меди, который по размерам соответствует тэну на плите. Поверхность листа очистите от жира и зачистите наждачной бумагой, затем поместите на плиту и нагревайте при максимальной температуре.
      2. Во время образования окиси можно увидеть разноцветные узоры. Необходимо дождаться чёрного цвета, а затем оставить медный лист нагреваться ещё около получаса. По истечении этого промежутка времени плита выключается. Лист остаётся на ней для медленного охлаждения.
      3. Когда чёрная окись отпадёт, необходимо промыть медь под проточной водой.
      4. Затем вырежьте кусок аналогичного размера из целого листа. Обе части разместите в пластиковой бутылке. Важно, чтобы они не соприкасались друг с другом.
      5. Медные пластины прикрепите к стенкам бутылки с помощью зажимов. Провод от чистого листа подключите к положительному выводу измерительного прибора, а от меди с оксидом - к отрицательному.
      6. Соль растворите в небольшом количестве воды. Солёную воду осторожно вливайте в бутылку, стараясь не намочить контакты. Раствора должно быть столько, чтобы он не покрывал пластины полностью. Солнечная батарея готова, можно проводить эксперименты.


      При размещении медных пластин в ёмкости нужно аккуратно изогнуть их, чтобы они вместились, но не сломались

      Есть ли выгода?

      КПД устройства, изготовленного из транзисторов, очень низок. Причина этого состоит в большой площади самого прибора и небольшом размере солнечного элемента (полупроводника). Таким образом, солнечная батарея на основе транзисторов не получила распространения, подобные устройства подходят только для развлечений.

      Диодам свойственно потреблять ток и самопроизвольно светиться. Поэтому при их использовании для изготовления солнечной батареи часть диодов будет генерировать электричество, а остальные приборы, наоборот, его потреблять. Из этого можно сделать вывод, что эффективность такого устройства низкая.

      Чтобы зажечь лампочку от солнечной батареи на основе медных листов, потребуется использовать большое количество материала. К примеру, для работы плиты на 1000 Вт необходимо 1 600 000 м² меди. Для обустройства такого прибора на крыше дома потребуется, чтобы её площадь составляла 282 м². И все усилия пошли бы на обеспечение работы одной печи. На практике использовать такую солнечную батарею нет смысла.

      Несмотря на относительную дороговизну, солнечные батареи довольно быстро окупаются. Попробуйте этот экологичный способ выработки энергии, собрав солнечную батарею своими руками.


      В последнее время все популярнее становится солнечная энергетика.
      Мы решили попробовать сделать солнечную батарею своими руками.

      Информации в интернете не так много. Чаще всего один и тот же текст перепечатан с одного сайта на другой.
      Цель сборки солнечного коллектора своими руками - оценить возможность такой сборки и экономический смысл.
      Итак, в Китае заказан комплект поликристаллических солнечных элементов размером 6*6 дюймов для солнечного коллектора. Комплект включал в себя 40 солнечных элементов, карандаш для пайки, а так же соединительная лента для спайки элементов. Для удешевления куплены солнечные элементы класса В, т. е. с дефектами. Дефектные пластины не могут идти на промышленное производство солнечных панелей, но вполне работоспособны. Наша цель уменьшить бюджет.

      Заявленные продавцом параметры: мощность одного элемента размером 6*6 дюймов 4Вт, напряжение 0,5В.
      Для того, чтобы была возможность заряжать аккумулятор 12В, необходимо собрать панель с напряжением 18В, т. е. понадобится 36 элементов. 4 элемента запасные.
      После получения комплекта из 40 солнечных элементов они были изучены. Качество элементов оставляет желать лучшего. Практически все они имеют достаточно серьезные дефекты. Ну ладно, наша цель оценить возможность сборки солнечной панели своими руками.
      Купленные элементы не имеют припаянных проводников, поэтому паять их придется самостоятельно.
      Как оказалось, это совсем не сложно. После пайки нескольких элементов выработалась определенная технология. Используя паяльник мощностью 25Вт, карандаш для подготовки поверхности пайки и имеющееся олово. Главное не наносить на место пайки много олова, тогда паять легко и делается это достаточно быстро. Проверка соединения повлекла за собой расколовшийся солнечный элемент, т. е. пайка получается достаточно надежной.

      После обработки мест пайки карандашом наносим на эти места олово.

      После пайки получается достаточно культурное изделие.

      Так паяем все 40 элементов.

      Паяльником работаем аккуратно. Для работы необходимо выбрать ровную поверхность. Удобнее всего паять на стеклянной поверхности.
      Первый припаянный элемент был проверен на улице. Без нагрузки выдает 0.55В. Это дает надежду о реальности получить 18В с 36 элементов, спаянных последовательно.
      Нашей целью не являлось конечное изделие, поэтому мы решили не делать корпус для солнечной панели, а ограничиться ровной поверхностью для набора солнечных элементов. Начинаем пайку элементов между собой.
      Паять, как уже говорилось, не сложно. Но элементы настолько хрупкие, что требуют очень бережного к ним обращения. После соединения между собой последовательно 12 элементов несколько штук раскололись. Неравномерный цвет солнечных элементов - это качество исходных элементов.

      Они, конечно, остались работоспособны, но ожидать от них заявленной мощности уже не придется.
      Измеряем ток без нагрузки прямо в помещении. Конечно, эти цифры ничего не скажут, но нам стало интересно.
      12 солнечных элементов выдали около 4В.

      Несем нашу солнечную панель на улицу. На улице ясное небо и активное солнце.
      Панель выдает напряжение без нагрузки около 7В. Т. е. мы получили ожидаемое напряжение.


      На этом мы решили подвести некоторые итоги.
      Несколько советов по подобной работе. Проводник для соединения солнечных элементов необходимо делать строго в размер, учитывая полную длину одного солнечного элемента, расстояние между элементами и длину проводника на внутренней части солнечного элемента. Дело в том, что на обратной части солнечного элемента необходимо использовать проводник короче, чем сам элемент. Точная подгонка проводника позволит быстро и аккуратно паять элементы. Подрезание уже припаянного проводника грозит сломанным элементом.
      Не наносите много олова на место пайки. Оно плохо разогревается, что приводит к более сильному нажатию паяльником. Существует риск расколоть солнечный элемент.
      Для сборки солнечной батареи своими руками для начала необходимо подготовить корпус для будущей солнечной батареи. Затем в него уже вставлять и крепить солнечные элементы с припаянными проводниками, а уже затем паять солнечные элементы между собой. Это позволит избежать повреждений при переносе спаянных элементов.
      Теперь несколько слов о экономике. Купленный на Ebay комплект обошелся около 3000 руб. Солнечные элементы класса А, т. е. без дефектов, стоят дороже. При условии, что нам бы хватило 40 полученных солнечных элементов на солнечную батарею из 36 этих солнечных элементов, а их мощность соответствовала бы заявленной в 4Вт, то мы бы получили панель с напряжением 18В мощностью 144Вт. Дополнительно придется изготовить своими руками корпус солнечной батареи, затратив какие либо средства.
      Заглядываем в интернет и легко находим солнечные батареи заводского производства с подобными характеристиками за 6000 руб.

      Нужно ли делать солнечную батарею своими руками? На наш взгляд нет. Солнечная панель заводского производства выиграет по всем параметрам: надежности, долговечности, техническим параметрам и цене.

      Энергетический потенциал солнечного света огромен – оценить его влияние можно лишь потому, что существует буйная жизнь на планете, приведшая к появлению разумного человека, активно потребляющего и перерабатывающего энергию. На протяжении миллиардов лет часть энергии солнца аккумулировалась в отложениях отмерших организмов (полезных ископаемых), которые находятся в относительно легкодоступной для добычи и переработки форме.

      Но загрязнение окружающей среды и ограниченный запас недр земли заставляют человечество по новому взглянуть на возможности прямого использования энергии солнечного света.

      Для обеспечения текущих нужд человечества в энергии было бы достаточно заполнить солнечными электростанциями относительно небольшую площадь в пустыне Сахара. Поскольку электроэнергия является наиболее удобным для использования и переработки видом энергии, прямое преобразование света Солнца в электричество, используя солнечные батареи из фотоэлементов.


      Красными квадратами отображена площадь, необходимая для размещения солнечных электростанций, чтобы обеспечить энергетические потребности Земли, Европы и Германии соответственно

      Принцип действия фотоэлементов

      Фотоэлементом называют прибор, преобразующий энергию фотонов света в электроэнергию. В настоящее время активно разрабатываются перспективные технологии создания полупроводниковых фотоэлектрических преобразователей, базирующиеся на внутреннем фотоэффекте . При внутреннем фотоэффекте происходит перераспределение электронов по их энергетическим состоянием в полупроводниках под воздействием излучения.

      Иллюстрация и описание внутреннего фотоэффекта

      Преобразование энергии света в электроэнергию происходит в неоднородных полупроводниковых структурах. Неоднородность структур создается при помощи легирования, соединения, и изменения химического состава полупроводников. Таким образом, возникает градиент изменения ширины запрещенной зоны полупроводника под воздействием излучения, что приводит к возникновению электродвижущей силы.


      Описание применения фотоэффекта

      Эффективность фотоэлемента зависит следующих факторов:

      • фотопроводимости полупроводников;
      • рассеяния и отражения проецируемого света;
      • прохождения части излучения сквозь фотоэлектрический преобразователь без преобразования;
      • рекомбинации образовавшихся фотоэлектронных пар;
      • внутреннего сопротивления фотоэлемента;
      • других физических и химических характеристик.


      Основные законы фотоэффекта

      Радиолюбители знают, что если распилить диод или транзистор и осветить полупроводниковый переход, то можно получить небольшой потенциал на выводах элемента. Данный эффект часто применяется при создании самодельных светочувствительных сенсоров или демонстрационных пособий, но для масштабного преобразования света в энергию данный способ невыгоден.

      Очевидно, что сделать солнечную батарею в домашних условиях «с нуля» не представляется возможным ввиду технологической сложности процесса, поэтому для рядового потребителя имеет смысл собственноручное создание генерирующих панелей из готовых фотоэлементов


      Готовые фотоэлементы для солнечных батарей в защитной транспортной упаковке

      Эффективность фотоэлементов

      Эффективная ширина запрещенной зоны полупроводникового перехода зависит от длины волны (спектра свечения). Поэтому в лабораторных и промышленных фотоэлементах стали применяться каскадные технологии, позволяющие разделять свет на спектры и раздельно облучать фотоэлектронные преобразователи, рассчитанные на узкий диапазон световых волн.

      Данные технологии подразумевают использование знаний в различных отраслях науки с применением сложных исследований в лабораториях. Для изготовления фотоэлементов применяются кремневые пластины с примесями различных химических элементов и соединений. Прибыльные перспективы преобразования энергии Солнца в электроэнергию позволили развиться целой отрасли промышленности, по мощности сопоставимой с производством радиоэлектроники.


      Производители фотоэлементов занимаются улучшением оптических и электрических свойств фотоэлементов путем просветления, создания антибликовых покрытий, применением многокаскадной структуры.

      На данный момент средняя эффективность промышленного преобразования света в электроэнергию (коэффициент полезного действия) примерно 14%, а у лучших образцов примерно 25%. В лабораторных условиях достигнута эффективность около 45%.

      Формирование генерирующей батареи

      Принцип работы солнечных батарей состоит в соединении фотоэлементов в одну структуру, генерирующую электроэнергию, которая аккумулируется в аккумуляторах, с последующей переработкой в электричество промышленного напряжения и частоты.

      Фотоэлементы, как и другие элементы питания, при последовательном подключении дают большее напряжение, а при параллельном соединении увеличивается выходной ток и уменьшается суммарное внутреннее сопротивление батареи.


      Данный принцип формирования солнечной батареи является масштабируемым, то есть применимым как для соединений отдельных фотоэлементов, так и к подключению уже собранных сборок в одну панель.

      Поскольку размеры полупроводниковых переходов измеряются микронами, производители объединяют фотоэлектронные преобразователи в готовых фотоэлементах, имеющих выходные характеристики (напряжения, сила тока, мощность) и пригодные для дальнейшего объединения в батарее.


      Перед тем, как сделать солнечную батарею своими руками, нужно знать ожидаемую выходную мощность, которая рассчитывается из тока зарядки аккумуляторов, которые подключены к инверторам для генерации сетевого напряжения. Таким образом, зная максимальный ток зарядки имеющихся аккумуляторов можно рассчитать количество и площадь требуемых фотоэлементов для солнечной батареи, учитывая их коэффициент полезного действия.

      Комплектующие для солнечной батареи

      Как видно из рисунка ниже, мировыми лидерами в производстве фотоэлементов для солнечных батарей различной мощности являются Китай и Германия. Поэтому, в большинстве случаев крупные производители солнечных электростанций и отдельные пользователи делают заказы через Интернет, приобретая китайские фотоэлементы для сборки генерирующих панелей.


      Динамика роста производства фотоэлементов для преобразования энергии Солнца в электричество

      Поскольку пластина фотоэлемента является очень хрупкой, необходима прочная конструкция, которая будет защищать светочувствительный элемент от изгибов и влияния внешней среды. Данная конструкция должна обеспечивать:

      • надежное электрическое соединение фотоэлементов;
      • прочность и неизменность геометрических параметров сборки;
      • защиту от механических повреждений;
      • защиту влияния влаги, осадков, пыли и грязи;
      • малое отражение света (антибликовое покрытие);
      • хорошую прозрачность защитного стекла.


      Новейшие технологии позволяют делать солнечные батареи гибкими, что существенно уменьшает проблемы при их монтаже

      Производители предлагают фотоэлементы различных размеров и типов, у которых имеются свои нюансы сборки, монтажа и подключения. Также часто прилагается пленка антибликового покрытия, которое мастеру придется нанести самому на собранную солнечную батарею. Поэтому нужно тщательно изучить всю доступную документацию на покупаемые фотоэлементы перед тем, как собирать солнечные батареи. На видео ниже показан обзор наиболее популярных фотоэлементов.

      Получение электроэнергии из солнечной батареи

      Нужно помнить, выходной ток и напряжение солнечной батареи зависит от плотности светового потока и угла падения солнечных лучей. Поэтому в пасмурную погоду, а также утром и вечером, выходная мощность батареи будет в несколько раз ниже, чем в солнечный полдень.

      Поскольку нельзя изменять погодные условия, то можно увеличить суммарное количество лучей, направленных на солнечную батарею при помощи светоотражателей , сделанных из фольги.


      При помощи самодельных светоотражателей из фольги можно существенно увеличить эффективность солнечных батарей

      Как правило, солнечные панели устанавливают перпендикулярно гипотетической линии от Солнца, находящегося на небосводе в полдень. Другими словами, перпендикуляр, установленный на площадь солнечной панели не должен отбрасывать тень. Данный угол установки будет меняться согласно смене времен года – в день летнего солнцестояния Солнце поднимается над горизонтом в самой высшей точке.

      В большинстве случаев солнечные батареи устанавливают стационарно и без регулировки, иногда даже на разные стороны крыши дома, получая эффективную генерацию электроэнергии только в определенные часы суток.

      Чтобы максимально увеличить эффективность солнечной батареи, нужно установить устройство, которое будет отслеживать движение Солнца по небосводу, направляя панель перпендикулярно падающим лучам.


      Солнечная батарея установлена на поворотном устройстве, отслеживающем движение Солнца в течении светового дня

      Аккумуляторы для солнечных батарей должны иметь контроллер зарядки для соблюдения правильных параметров заряжающего тока. Наблюдая ток зарядки в самый благоприятный период, засекая необходимое время, можно планировать увеличение площади солнечных батарей или установку дополнительных аккумуляторов.

      При самом простом подключении солнечных батарей к аккумулятору рекомендуется между ними последовательно подключить диод, для предотвращения разряда обратным током.