Разновидности диодов и их обозначение. Классификация и система обозначений полупроводниковых диодов




В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда Вы убирали шланчик насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная фиговинка - ниппель . Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника - эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой - это заряженный конденсатор , шланг - это провод, катушка индуктивности - это колесо с лопастями



которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент - диод . И в этой статье мы познакомимся с ним поближе.

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель;-). Некоторые диоды выглядят почти также как и резисторы:





А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:



Диод имеет два вывода , как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия - анод и катод (а не плюс и минус, как говорят некоторые неграмотные электронщеги). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской , отличающейся от цвета корпуса





2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод "откроется" и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод - плюс, то ток через диод не потечет. Своеобразный ниппель;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки;-).



Диоды оцениваются по двум основным параметрам: предельному обратному напряжению (Uобр) и максимальной силой тока (Imax ), проходящей через него. Предельное обратное напряжение представляет собой максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии, то есть на анод минус, а на катод - плюс.Максимальный рабочий ток представляет собой ток при прямом включении диода, который диод может выдержать, не выходя из строя.

Существуют также иные виды диодов:стабилитроны (диоды Зенера), светодиоды, тиристоры. Давайте подробнее рассмотрим каждый из них. ..

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение . Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь - прямое направление, а вот в стабилитроне другая часть ветки ВАХ - обратное направление. Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры - Закон Джоуля-Ленца . Главный параметр стабилитрона - это напряжение стабилизации (Uст) . Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон - это минимальный и максимальный ток (I min, Imax) . Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:



На схемах обозначаются вот так:

Более подробно про стабилитроны можно прочитать в этой статье.

Светодиоды - особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет - это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже. Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (I max ) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменника и поставить туда постоянный резистор с таким же номиналом.





Лампы освещения из светодиодов потребляют копейки электроэнергии, но стоят до сих пор очень дорого.





Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.



На схемах светодиоды обозначаются так:

Как проверить светодиод можно узнать из этой статьи в конце.

Триодные тиристоры (тринисторы) представляют собой диоды, проводимость которых управляется с помощью третьего вывода - управляющего электрода (УЭ ). Основное применение тиристоров - это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тринисторы примерно как диоды или транзисторы. У тринисторов параметров столько, что не хватит статьи для их описания. Главный параметр - I ос,ср . - среднее значение тока, которое должно протекать через тринистор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тринистора - () , которое подается на управляющий электрод и при котором тринистор полностью открывается.



а вот так примерно выглядят силовые тринисторы, то есть тринисторы, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров - динисторы и симисторы . У динисторов нету управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы - это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в основном в цепях с переменным током.

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки . Диодные мосты - одна из разновидностей диодных сборок.



На схемах диодный мост обозначается вот так:

Существуют также и редко применяемые виды диодов: диоды Шоттки и туннельные диоды . Описание этих видов диодов выходит за рамки данной статьи.

Диод - незаменимый радиоэлектронный компонент. Эра полупроводниковой техники начиналась именно с него. На базе диода были построены все остальные полупроводниковые элементы, которые преобразили нашу жизнь.

Под диодом обычно понимают электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь. Односторонняя проводимость диода является его основным свойством. Это свойство и определяет назначение диода:

  • преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование);
  • выпрямление переменного тока в постоянный.

Под детектированием понимают еще кроме этого обнаружение сигнала.

Классификация диодов

По исходному полупроводниковому материалу диоды делят на четыре группы:

  • германиевые,
  • кремниевые,
  • из арсенида галлия,
  • из фосфида индия.

Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые .

Это связано с их большей проводимостью при небольшом напряжении (около 0,1...0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5...30 кОм).

По конструктивно-технологическому признаку различают диоды:

  • точечные,
  • плоскостные.

По назначению полупроводниковые диоды делят на следующие основные группы:

  • выпрямительные,
  • универсальные,
  • импульсные,
  • варикапы,
  • стабилитроны (опорные диоды),
  • стабисторы,
  • туннельные диоды,
  • обращенные диоды,
  • лавинно-пролетные (ЛПД),
  • тиристоры,
  • фотодиоды, с
  • ветодиоды и оптроны.

Диоды характеризуются такими основными электрическими параметрами :

  • током, проходящим через диод в прямом направлении (прямой ток Іпр);
  • током, проходящим через диод в обратном направлении (обратный ток Іобр);
  • наибольшим допустимым выпрямленным ТОКОМ Івыпр.макс;
  • наибольшим допустимым прямым током Іпр.доп.;
  • прямым напряжением Unp;
  • обратным напряжением иобР;
  • наибольшим допустимым обратным напряжением иобр.макс
  • емкостью Сд между выводами диода;
  • габаритами и диапазоном рабочих температур.

Старая система обозначений

В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов .

Первый элемент буквенный, Д — диод.

Второй элемент — номер, соответствующий типу диода: 1...100 — точечные германиевые, 101...200— точечные кремниевые, 201...300 — плоскостные кремниевые, 801...900 — стабилитроны, 901...950 — варикапы, 1001...1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.

В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока) на:

  • низкочастотные НЧ (до 3 МГц),
  • средней частоты СЧ (от 3 до 30 МГц),
  • высокочастотные ВЧ (свыше 30 МГц),
  • сверхвысокочастотные СВЧ;

По рассеиваемой мощности:

  • маломощные (до 0,3 Вт),
  • средней мощности (от 0,3 до 1,5 Вт),
  • большой (свыше 1,5 Вт) мощности.

Новая система обозначений

Новая система маркировки диодов более совершенна. Она состоит из четырех элементов.

Первый элемент (буква или цифра) указывает исходный полупроводниковый материал, из которого изготовлен диод: Г или 1 — германий * К или 2 — кремний , А или 3 — арсенид галлия , И или 4 — фосфид индия .

Второй элемент — буква, показывающая класс или группу диода.

Третий элемент — число, определяющее назначение или электрические свойства диода.

Четвертый элемент указывает порядковый номер технологической разработки диода и обозначается от А до Я.

Например:

  • диод КД202А расшифровывается: К — материал, кремний, Д — диод выпрямительный, 202 — назначение и номер разработки, А — разновидность;
  • 2C920 — кремниевый стабилитрон большой мощности разновидности типа А;
  • АИ301Б — арсенид галлиевый туннельный диод переключающей разновидности типа Б.

Иногда встречаются диоды, обозначенные по устаревшим системам: ДГ-Ц21, Д7А, Д226Б, Д18. Диоды Д7 отличаются от диодов ДГ-Ц цельнометаллической конструкцией корпуса, вследствие чего они надежнее работают во влажной атмосфере.

Германиевые диоды типа ДГ-Ц21...ДГ-Ц27 и близкие к ним по характеристикам диоды Д7А...Д7Ж обычно используют в выпрямителях для питания радиоаппаратуры от сети переменного тока.

В условное обозначение диода не всегда входят некоторые технические данные, поэтому их необходимо искать в справочниках по полупроводниковым приборам.

Одним из исключений является обозначение для некоторых диодов с буквами КС или цифрой вместо К (например, 2С) — кремниевые стабилитроны и стабисторы.

После этих обозначений стоит три цифры, если это первые цифры: 1 или 4, то взяв последние две цифры и разделив их на 10 получим напряжение стабилизации Uст.

Например:

  • КС107А — стабистор, Uст = 0,7 В,
  • 2С133А — стабилитрон, Uст = 3,3 В.

Если первая цифра 2 или 5, то последние две цифры показывают Uст, например:

  • КС 213Б — Uст = 13 В,
  • 2С 291А — Uст = 91 В.

Еесли цифра 6, то к последним двум цифрам нужно прибавить 100 В, например: КС 680А - Uст = 180 В.

Маркировка диодов

На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, и дату изготовления, а также его условное обозначение.

Условное обозначение диода (анод и катод) указывает, как нужно подключать диод на платах устройств. Диод имеет два вывода, один из которых катод (минус), а другой — анод (плюс).

Условное графическое изображение на корпусе диода наносится в виде стрелки, указывающей прямое направление, если стрелки нет, то ставится знак «+».

На плоских выводах некоторых диодов (например, серии Д2) прямо выштамповано условное обозначение диода и его тип. При нанесении цветового кода, цветную метку, точку или полоску наносят ближе к аноду (рис. 1).

Для некоторых типов диодов используется цветная маркировка в виде точек и полосок (табл. 1). Диоды старых типов, в частности точечные, выпускались в стеклянном оформлении и маркировались буквой «Д» с добавлением цифры и буквы, обозначающих подтип прибора. Германиево-индиевые плоскостные диоды имели обозначение «Д7».

Рис. 1. Нанесение цветового кода на диоды.

Таблица 1 Цветовая маркировка полупроводниковых диодов.

Тип диода

Цвет кольца (к), точки (т)

со стороны катоде (в середине корпуса) со стороны анода

Оранжевая т

Голубая т.

Зеленая т.

Черная т.

Красная т.

Красная т.

Оранжевая т.

Желтая т.

Голубая т.

Зеленая и голубая т.

Две желтые т.

Две белые т.

Две зеленые т.

Красная т.

Желтая т.

Оранжевая т.

Зеленая т.

Желтая т.

Белая или желтая полоса на торце корпуса

Зеленая т.

Красная т.

Белая или желтая т.

Метка черного, зеленого или желтого цвета

Черная т.

Зеленая т.

* Цвет корпуса коричневый.

Тип диода

Цвет кольца (к), точки (т)

со стороны катода (в середине корпуса} со стороны анода

Оранжевое к.

Красное к.

Зеленое к.

Желтое к.

Голубое к.

КД243Ж

Фиолетовое к.

Оранжевое к.

Красное к.

Зеленое к.

Желтое к.

Голубое к.

КД510А Одно широкое и два узких зеленых к.
2Д510А Одно широкое и одно узкое зеленое к.
КД521А 1 шир + 2 узкие
КД521Б Синие полосы
КД521В Желтые полосы
КД522А Одно узкое черное к. Одно широкое
КД522Б Два узких черных к. Черное кольцо
КД522В Три узких черных к. + тип диода

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Полупроводниковые компоненты

Полупроводниковые диоды

Классификация и система обозначений полупроводниковых диодов

Полупроводниковым диодом называется полупроводниковый прибор, как правило, с одним электронно-дырочным переходом и двумя выводами.

Полупроводниковые диоды подраз­деляются на группы по многим при­знакам. Бывают диоды из различных полупроводниковых материалов, пред­назначенные для низких или высоких частот, для выполнения различных функций и отличающиеся друг от друга по конструкции.

Система обозначений современных полупроводниковых диодов, установлена отраслевым стандартом ОСТ 11.336.919-81 и базируется на ряде классификационных признаков этих приборов.

В основу системы обозначений положен буквенно-цифровой код.

Первый элемент обозначает исходный полупроводнико­вый материал, на основе которого изготовлен прибор.

Для обозначения исходного материала используются сле­дующие символы:

Г и 1 - для германия или его соединений;

К и 2 - для кремния или его соединений;

А и 3 - для соединения галлия (например, для арсенида галлия);

И и 4 - для соединения индия (например, для фосфида индия).

Второй элемент обозначения - буква, определяющая подкласс (или группу) приборов.

Для обозначения подклассов приборов используется одна из следующих букв:

Д - диодов выпрямительных и импульсных;

Ц - выпрямительных столбов и блоков;

В - варикапов;

И - туннельных диодов;

А - сверхвысокочастотных диодов;

С - стабилитронов;

Г - генераторов шума;

Л - излучающих оптоэлектронных приборов;

О - оптопар;

Н - диодных тиристоров;

У - триодных тиристоров.

Третий элемент обозначения - цифра, определяющая основные функциональные возможности прибора.

Для обозначения наиболее характерных эксплуатационных признаков приборов (их функциональных возможностей) ис­пользуются следующие цифры применительно к различным подклассам приборов.

Диоды (подкласс Д):

1 - для выпрямительных диодов с постоянным или сред­ним значением прямого тока не более 0,3 А;

2 - для выпрямительных диодов с постоянным или сред­ним значением прямого тока более 0,3 А, но не свыше 10 А;

3- диодные преобразователи (магнитодиоды, термодиоды и др.);

4 - для импульсных диодов с временем восстановления обратного сопротивления более 500 нс;

5 - для импульсных диодов с временем восстановления более 150 нс, но не свыше 500 нс;

6 - для импульсных диодов с временем восстановления 30... 150 нс;

7 - для импульсных диодов с временем восстановления 5...30 нс;

8 - для импульсных диодов с временем восстановления 1...5 нс;

9 - для импульсных диодов с эффективным временем жизни неосновных носителей заряда менее 1 нс.

Выпрямительные столбы и блоки (подкласс Ц):

1 - для столбов с постоянным или средним значением прямого тока не более 0,3 А;

2 - для столбов с постоянным или средним значением прямого тока не более 0,3...10 А;

3 - для блоков с постоянным или средним значением прямого тока не более 0,3 А;

4 - для блоков с постоянным или средним значением прямого тока более 0,3... 10 А.

Варикапы (подкласс В):

1 - для подстроенных варикапов;

2 - для умножительных варикапов.

Туннельные диоды (подкласс И):

1 - для усилительных туннельных диодов;

2 - для генераторных туннельных диодов;

3 - для переключательных туннельных диодов;

4 - для обращенных диодов.

Сверхвысокочастотные диоды (подкласс А):

1 - для смесительных диодов;

2 - для детекторных диодов;

3 - для усилительных диодов;

4 - для параметрических диодов;

5 - для переключательных и ограничительных диодов;

6 - для умножительных и настроечных диодов;

7 - для генераторных диодов;

8 - для импульсных диодов.

Стабилитроны (подкласс С):

1 - для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации менее 10 В;

2 - для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации 10...100 В;

3 - для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации более 100 В;

4 - для стабилитронов мощностью 0,3...5 Вт с номиналь­ным напряжением стабилизации менее 10 В;

5 - для стабилитронов мощностью 0,3...5 Вт с номиналь­ным напряжением стабилизации 10...100 В;

6 - для стабилитронов мощностью 0.3...5 Вт с номиналь­ным напряжением стабилизации более 100 В;

7 - для стабилитронов мощностью 5...10 Вт с номиналь­ным напряжением стабилизации менее 10 В;

8 - для стабилитронов мощностью 5... 10 Вт с номиналь­ным напряжением стабилизации 10...100 В;

9 - для стабилитронов мощностью 5...10 Вт с номиналь­ным напряжением стабилизации более 100 В.

Генераторы шума (подкласс Г):

1 - для низкочастотных генераторов шума;

2 - для высокочастотных генераторов шума.

Излучающие оптоэлектронные приборы (подкласс Л):

источники инфракрасного излучения:

1 - для излучающих диодов;

2 - для излучающих модулей;

приборы визуального представления информации:

3 - для светоизлучающих диодов;

4 - для знаковых индикаторов;

5 - для знаковых табло;

6 - для шкал;

7 - для экранов.

Оптопары (подкласс О):

Р - для резисторных оптопар;

Д - для диодных оптопар;

У - для тиристорных оптопар;

Т - для транзисторных оптопар.

Четвертый элемент - число, обозначающее порядко­вый номер разработки технологического типа. Для обозначе­ния порядкового номера разработки используется двухзнач­ное число от 01 до 99. Если порядковый номер разработки превысит число 99, то в дальнейшем используют трехзначное число от 101 до 999.

Пятый элемент - буква, условно определяющая класси­фикацию (разбраковку по параметрам) приборов, изготовлен­ных по единой технологии. В качестве классификационной литеры используют буквы русского алфавита (за исключением букв 3, О, Ч, Ы, Ш, Щ, Ю, Я, Ь, Ъ, Э).

В качестве дополнительных элементов обозначения ис­пользуют следующие символы:

цифры 1-9 для обозначения модификаций прибора, при­водящих к изменению его конструкции или электрических па­раметров;

букву С для обозначения сборок - наборов в общем корпусе однотипных приборов, не соединенных или соединен­ных одноименными выводами;

цифры, написанные через дефис для обозначений следую­щих модификаций конструктивного исполнения бескорпусных приборов:

1 - с гибкими выводами без кристаллодержателя;

2 - с гибкими выводами на кристаллодержателе (под­ложке);

3 - с жесткими выводами без кристаллодержателя (под­ложки);

4 - с жесткими выводами на кристаллодержателе (под­ложке);

5 - с контактными площадками без кристаллодержателя (подложки) и без выводов;

6 - с контактными площадками на кристаллодержателе без выводов, буква Р - после последнего элемента обозначе­ния для приборов с парным подбором, буква Г - с подбором в четверки, буква К - с подбором в шестерки.

Таким образом, современная система обозначений вмеща­ет значительный объем информации о свойствах прибора.

Примеры обозначений приборов:

2Д921А - кремниевый импульсный диод с эффективным временем жизни неосновных носителей заряда менее 1 нс, номер разработки 21,группа А;

ЗИ203Г - арсенидогаллиевый туннельный генераторный диод, номер разработки 3, группа Г;

АЛ103Б - арсенидогаллиевый излучающий диод инфра­красного диапазона, номер разработки 3, группа Б.

Поскольку ОСТ 11. 336.919-81 введен в действие в 1982 г., для ранее разработанных приборов использована иная систе­ма обозначений. Условные обозначения приборов, разрабо­танных до 1964 г., состоят их двух или трех элементов.

Первый элемент обозначения - буква Д, характеризую­щая весь класс полупроводниковых диодов.

Второй элемент обозначения - число (номер), которое указывает на область применения:

от 1 до 100 - для точечных германиевых диодов;

от 101 до 200 - для точечных кремниевых диодов;

от 201 до 300 - для плоскостных кремниевых диодов;

от 301 до 400 - для плоскостных германиевых диодов;

от 401 до 500 - для смесительных СВЧ детекторов;

от 501 до 600 - для умножительных диодов;

от 601 до 700 - для видеодетекторов;

от 701 до 749 - для параметрических германиевых ди­одов;

от 750 до 800 - для параметрических кремниевых ди­одов;

от 801 до 900 - для стабилитронов;

от 901 до 950 - для варикапов;

до 951 до 1000 - для туннельных диодов;

от 1001 до 1100 - для выпрямительных столбов.

Третий элемент обозначения - буква, указывающая на разновидность групп однотипных приборов.

В технической документации и специальной литературе следует применять условные графические обозначения полу­проводниковых приборов в соответствии с ГОСТ 2.730-73.

Графические обозначения полупроводниковых приборов приведены в таблице 2.1.

Таблица 2.1– Условные графические обозначения полу­проводниковых диодов

В справочной литературе приводятся основные стандарты наполу­проводниковые диоды.

Буквенно-цифровой код диодов обязательно указывается рядом с их условным графическим обозначением (УГО) на схемах принципиальных электрических (рисунок 2.1), подробно описывающих элементную базу электронного устройства и электрические связи между электрорадиоэлементами (ЭРЭ).

Рисунок 2.1 – УГО диода с буквенно-цифровым кодом

На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, дату изготовления, а также его условное обозначение. Условное обозначение диода указывает, как нужно подключать диод на платах устройств.

Диод имеет два вывода, один из которых - катод (область n), а другой - анод (область р). На рисунке 2.2 анод обозначен буквой А, а катод – буквой К. При прямом включении анод имеет больший потенциал (плюс), а катод меньший (минус).

Рисунок 2.2 – Обозначение выводов диода

Фотографии разных типов диодов показаны на рисунке 2.3



Рисунок 2.3 – Фотографии разных типов диодов

Условное графическое изображение на корпусе наносится в виде стрелки, указывающей прямое направление (рисунок 2.4,а). Если стрелки нет, то ставится знак + рядом с анодом. На плоских выводах, некоторых диодов(например, типа Д2) прямо выштамповано условное обозначение диода (рисунок 2.4,б). При нанесении цветового кода цветную метку, точку или полоску наносят ближе к аноду (рисунки 2.4,в,г). Цветная маркировка в виде точек и полосок приведена в таблицах 2.2–2.5. На рисунке 2.4 указаны также габаритные размеры диодов в миллиметрах.

Рисунок 2.4 – Условное графическое изображение диода на корпусе и цветная маркировка в виде точек

Таблица 2.2 – Цветовая маркировка некоторых типа полупроводниковых диодов

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. В соответствии с индивидуальными свойствами и конструктивными особенностями, производится маркировка диодов, отражающая их технические характеристики.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В зависимости от технологических признаков и конструкции, диоды бывают плоскостными или точечными, импульсными, универсальными или выпрямительными. Среди них следует отметить отдельную группу, куда входят , фотодиоды и тиристоры.


Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов должна учитывать параметры и технические особенности проводника. Материал, из которого изготовлен полупроводник, обозначается на корпусе соответствующими буквенными обозначениями. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства. Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые код ы и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах.

Маркировка импортных диодов

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в "семейство" диодов входит не один десяток полупроводниковых приборов, носящих название "диод". Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод - катод, один из которых обладает электропроводностью типа р, а другой - n.

Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)

Внутреннее сопротивление диода (открытого) - величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.

Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД"ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.

Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:

Вывода ~ подключаются к трансформатору, на схеме это будет выглядеть вот так:

Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.


Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать .

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:


Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.

Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:

Стабилитрон

Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.

Стабилитроны на схемах обозначаются следующим образом:

Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.

Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.

Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.

Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.

Симистор

Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.

Светодиод

Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.


Обозначение на схемах:

Инфракрасный диод

Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне. Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.


Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.

Фотодиод

Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так.