Строение оболочки бактериальной клетки. Что представляет собой оболочка? Внешнее строение бактерий




Отличия бактерий от других клеток

1. Бактерии относятся к прокариотам, т. е. не имеют обособ-
ленного ядра.
2. В клеточной стенке бактерий содержится особый пептидо-
гликан - муреин.
3. В бактериальной клетке отсутствуют аппарат Гольджи, эндо-
плазматическая сеть, митохондрии.
4. Роль митохондрий выполняют мезосомы - инвагинации
цитоплазматической мембраны.
5. В бактериальной клетке много рибосом.
6. У бактерий могут быть специальные органеллы движения -
жгутики.
7. Размеры бактерий колеблются от 0,3-0,5 до 5-10 мкм.

По форме клеток бактерии подразделяются на кокки, палочки и извитые.
В бактериальной клетке различают:

1) основные органеллы:

а) ;
б) цитоплазму;
в) рибосомы;
г) цитоплазматическую мембрану;
д) клеточную стенку;

2) дополнительные органеллы:

а) споры;
б) капсулы;
в) ворсинки;
г) жгутики.
Цитоплазма представляет собой сложную коллоидную систе-
му, состоящую из воды (75%), минеральных соединений, белков, и ДНК, которые входят в состав органелл нуклеоида, рибосом, мезосом, включений.

Ядерное ещество, распыленное в цитоплазме
клетки. Не имеет ядерной мембвраны, ядрышек. В нем локализуется ДНК, представленная двухцепочечной спиралью. Обычно замкнута в кольцо и прикреплена к цитоплазматической мембране.

Содержит около 60 млн пар оснований. Это чистая ДНК, она не
cодержит белков гистонов. Их защитную функцию выполняют
метилированные азотистые основания. В нуклеоиде закодирована
основная генетическая информация, т. е. клетки.
Наряду с нуклеоидом в цитоплазме могут находиться авто-
номные кольцевые молекулы ДНК с меньшей молекулярной массой - плазмиды. В них также закодирована наследственная информация, но она не является жизненно необходимой для бактериальной клетки.

Рибосомы представляют собой рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц - 30 S и 50 S.
Рибосомы отвечают за синтез белка. Перед началом синтеза бел-
ка происходит объединение этих субъединиц в одну - 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.
Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.
Включения являются продуктами метаболизма микроорганиз-
мов, которые располагаются в их цитоплазме и используются
в качестве запасных питательных веществ. К ним относятся
включения гликогена, крахмала, серы, полифосфата (волютина)
и др.

2. Строение клеточной стенки
и цитоплазматической мембраны

Клеточная стенка - упругое ригидное образование толщи-ной 150-200 ангстрем. Выполняет следующие функции:
1) защитную, осуществление фагоцитоза;
2) регуляцию осмотического давления;
3) рецепторную;
4) принимает участие в процессах питания деления клетки;

5) антигенную (определяется продукцией эндотоксина - основного соматического бактерий);
6) стабилизирует форму и размер бактерий;
7) обеспечивает систему коммуникаций с внешней средой;
8) косвенно участвует в регуляции роста и деления клетки.
Клеточная стенка при обычных способах окраски не видна, но
если клетку поместить в гипертонический раствор (при опыте
плазмолиза), то она становится видимой.
Клеточная стенка вплотную примыкает к цитоплазматической
мембране у грамположительных бактерий, у грамотрицательных
бактерий клеточная стенка отделена от цитоплазматической мембраны периплазматическим пространством.
Клеточная стенка имеет два слоя:
1) наружный - пластичный;
2) внутренний - ригидный, состоящий из муреина.
В зависимости от содержания муреина в клеточной стенке различают грамположительные и грамотрицательные бактерии (по отношению к окраске по Грамму).
У грамположительных бактерий муреиновый слой составляет 80% от массы клеточной стенки. По Грамму, они окрашиваются в синий цвет. У грамположительных бактерий муреиновый
слой составляет 20% от массы клеточной стенки, по Грамму, они
окрашиваются в красный цвет.
У грамположительных бактерий наружный слой клеточной
стенки содержит липопротеиды, гликопротеиды, тейхоевые кис-
лоты, у них отсутствует липополисахаридный слой. Клеточная
стенка выглядит аморфной, она не структурирована. Поэтому при
разрушении муреинового каркаса бактерии полностью теряют
клеточную стенку (становятся протопластами), не способны
к размножению.
У грамотрицательных бактерий наружный пластический
слой четко выражен, содержит липопротеиды, липополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида
(О-антигена). При разрушении грамотрицательных бактерий образуются сферопласты - бактерии с частично сохраненной клеточной стенкой, не способные к размножению.
К клеточной стенке прилегает цитоплазматическая мембрана.
Она обладает избирательной проницаемостью, принимает участие
в транспорте питательных веществ, выведении экзотоксинов,
энергетическом обмене клетки, является осмотическим барьером,участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.
Имеет обычное строение: два слоя фосфолипидов (25-40%) и белки.
По функции мембранные белки разделяют на:
1) структурные;
2) пермиазы - белки транспортных систем;
3) энзимы - ферменты.
Липидный состав мембран непостоянен. Он может меняться
в зависимости от условий культивирования и возраста культуры.
Разные виды бактерий отличаются друг от друга по липидному
составу своих мембран.

3. Дополнительные органеллы бактерий

Ворсинки (пили, фимбрии) - это тонкие белковые выросты на
поверхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезию
бактерий на поверхности клеток макроорганизма. Они характерны
для грамположительных бактерий. Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клетками
в процессе конъюгации. Через них идет обмен генетической ин-
формацией от донора к реципиенту. Донор - мужская клетка -
обладает секс-пили. Женская клетка - реципиент - не имеет
секc-пили. Белок секс-пили колируется генами F-плазмиды.
Жгутики - органеллы движения. Есть у подвижных бактерий. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок - флагелин. Количество и расположение жгутиков может быть различным.
Различают:
1) монотрихи (имеют один жгутик);
2) лофотрихи (имеют пучок жгутиков на одном конце клетки);
3) амфитрихи (имеют по одному жгутику на каждом конце);
4) перитрихи (имеют несколько жгутиков, расположенных по
периметру).
О подвижности бактерий судят, рассматривая живые микро-
организмы, либо косвенно - по характеру роста в среде Пешко-
ва (полужидком агаре). Неподвижные бактерии растут строго по
уколу, а подвижные дают диффузный рост.

Капсулы представляют собой дополнительную поверхностную оболочку. Они образуются при попадании микроорганизма
в макроорганизм. Функция капсулы - защита от фагоцитоза и .
Различают макро- и микрокапсулы. Макрокапсулу можно выявить, используя специальные методы окраски, сочетая позитивные и негативные методы окраски. Микрокапсула - утолщение
верхних слоев клеточной стенки. Обнаружить ее можно только
при электронной микроскопии. Микрокапсулы характерны для вирулентных бактерий.

Среди бактерий различают:

1) истиннокапсульные бактерии (род Klebsiella) - сохраняют
капсулообразование и при росте на питательных средах, а не
только в макроорганизме;

2) ложнокапсульные - образуют капсулу только при попадании в макроорганизм.
Капсулы могут быть полисахаридными и белковыми. Они играют роль , могут быть фактором вирулентности.
Споры - это особые формы существования некоторых бактерий при неблагоприятных условиях внешней среды. Спорообразование присуще грамположительным бактериям. В отличие от
вегетативных форм споры более устойчивы к действию химических, термических факторов.
Чаще всего споры образуют бактерии рода Bacillus и Clostridium.
Процесс спорообразования заключается в утолщении всех
оболочек клетки. Они пропитываются солями дипикалината кальция, становятся плотными, клетка теряет воду, замедляются все
ее пластические процессы. При попадании споры в благоприятные условия она прорастает в вегетативную форму.
У грамотрицательных бактерий также обнаружена способность сохраняться в неблагоприятных условиях в виде некультивируемых форм. При этом нет типичного спорообразования, но в таких клетках замедлены метаболические процессы, невозможно сразу получить рост на питательной среде. Но при попадании в макроорганизм они превращаются в исходные формы.

Помимо 5 царств живой природы, существует еще два надцарства: прокариоты и эукариоты. Поэтому если рассматривать систематическое положение бактерий, то оно будет следующим:

Почему эти организмы выделяются в отдельный таксон? Все дело в том, что для бактериальной клетки характерно наличие некоторых особенностей, налагающих отпечаток на ее жизнедеятельность и взаимодействие с другими существами и человеком.

Открытие бактерий

Рибосомы - мельчайшие структуры, в большом количестве разбросанные в цитоплазме. Природа их представлена молекулами РНК. Данные гранулы являются материалом, по которому можно определить степень родства и систематическое положение конкретного вида бактерии. Функция их - сборка белковых молекул.

Капсула

Для бактериальной клетки характерно наличие защитных слизистых оболочек, состав которых определяется полисахаридами или полипептидами. Такие структуры имеют название капсул. Различают микро- и макрокапсулы. Данная структура формируется не у всех видов, но у подавляющего большинства, то есть не является обязательной.

От чего защищает капсула бактериальную клетку? От фагоцитоза антителами хозяина, если бактерия патогенная. Либо от высыхания и воздействия вредных веществ, если говорить о других видах.

Слизь и включения

Также необязательные структуры бактерий. Слизь, или гликокаликс, по химической основе является мукоидным полисахаридом. Может формироваться как внутри клетки, так и наружными ферментами. Хорошо растворима в воде. Предназначение: прикрепление бактерии к субстрату - адгезия.

Включения - это микрогранулы в цитоплазме различной химической природы. Это могут быть белки, аминокислоты, нуклеиновые кислоты или полисахариды.

Органоиды движения

Особенности бактериальной клетки также проявляются и в ее движении. Для этого присутствуют жгутики, которые могут быть в разном количестве (от одного до нескольких сотен на клетку). Основа каждого жгутика - белок флагеллин. Благодаря эластичным сокращениям и ритмичным движениям из стороны в сторону бактерия может передвигаться в пространстве. Крепится жгутик к цитоплазматической мембране. Расположение также может варьироваться у разных видов.

Пили

Еще более тонкие, чем жгутики, структуры, принимающие участие в:

  • прикреплении к субстрату;
  • водно-солевом питании;
  • половом размножении.

Состоят из белка пилина, количество их может доходить до нескольких сотен на клетку.

Сходство с клетками растений

Бактериальная и имеют одно неоспоримое сходство - наличие клеточной стенки. Однако если у растений она есть бесспорно, то у бактерий присутствует не у всех видов, то есть относится к необязательным структурам.

Химический состав бактериальной клеточной стенки:

  • пептидогликан муреин;
  • полисахариды;
  • липиды;
  • белки.

Обычно данная структура имеет двойной слой: наружный и внутренний. Функции выполняет такие же, как растений. Поддерживает и обозначает постоянную форму тела и обеспечивает механическую защиту.

Образование спор

Каково строение бактериальной клетки, мы рассмотрели достаточно подробно. Осталось только упомянуть о том, как бактерии могут переживать неблагоприятные условия, очень долгое время не теряя жизнеспособности.

Это им удается путем формирования структуры под названием спора. Она не имеет отношения к размножению и лишь предохраняет бактерии от неблагоприятных условий. По форме споры могут быть различными. При восстановлении нормальных окружающих условий спора инициируется и прорастает в активную бактерию.

Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.



Клеточная стенка. Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой (рис. 2, 14). Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки. Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.


Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.


Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид, мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот,- аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.


,
,


Составные части клеточной стенки, ее компоненты, образуют сложную прочную структуру (рис. 3, 4 и 5).


С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на две группы: грамположительные и грамотрицательные . Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.


Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен.


У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты (сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено. Вероятно, все эти вещества очень плотно связаны между собой.


Стенки грамотрицательных бактерий более сложные по химическому составу, в них содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий. Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные (рис. 6).



Внутренний слой состоит из муреина. Над ним находится более широкий слой из неплотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.


Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.



Капсула. Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой (рис. 7). Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.


Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.


По химическому составу капсулы чаще всего представляют собой полисахариды. Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).


Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.


Цитоплазма. Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.


,


Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной (рис. 2, 15).


Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.


Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.


Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.


На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20-30А. Такая мембрана называется элементарной (табл. 30, рис. 8).


,


Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов - мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами. Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы (рис. 2). Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки (табл. 30), которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.


,


В цитоплазме бактерий содержатся рибосомы- белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.


Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.


В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.


У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.


Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.


В результате наличияв цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже - 4-8 атм.


Ядерный аппарат. В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислот а (ДНК).


,


У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог - «ядерный эквивалент» - нуклеоид (см. рис. 2, 8), который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре - ядре. Ядро окружено оболочкой- мембраной .


У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклеоиде расположена в виде пучка фибрилл.


Жгутики. На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.


Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков. У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности и т. д. (рис. 9). Жгутики бактерий имеют диаметр 0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики Состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.



На поверхности некоторых бактериальных клеток имеются тонкие ворсинки - фимбрии .

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


Размеры - от 1 до 15 мкм. Основные формы:

Формы бактерий:


мезосомами

муреина грамположительные (окрашиваются по Граму) и грамотрицательные

нуклеоидом . Плазмиды эписомой .

У многих бактерий имеются жгутики (10) и пили (фимбрии)

Яндекс.ДиректВсе объявления

Спорообразование

Размножение.

Конъюгация

Трансформация

Трансдукция

Вирусы

Размеры вирусов - 10–300 нм. Форма вирусов:

Капсид Суперкапсид

вирионом

Строение клеток бактерий

Первые бактерии появились, вероятно, более 3.5 млрд. лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. В настоящее время они распространены повсеместно и определяют различные процессы, происходящие в природе.

Форма и размеры бактерий

Бактерии - это одноклеточные микроскопические организмы. Они имеют форму палочек, шариков, спиралей. Некоторые виды образуют скопления но нескольку тысяч клеток. Длина палочковидных бактерий составляет 0,002-0,003 мм. Поэтому даже при помощи микроскопа отдельные бактерии увидеть очень трудно. Однако их легко заметить невооруженным глазом, когда они развиваются в большом количестве и образуют колонии. В лабораторных условиях колонии бактерий выращивают на специальных средах, содержащих необходимые питательные вещества.

Бактериальная клетка, как и клетки растений, грибов и животных, покрыта плазматической мембраной. Но в отличие от них с внешней стороны мембраны расположена плотная клеточная оболочка. Она состоит из прочного вещества и выполняет одновременно защитную и опорную функции, придавая клетке постоянную форму. Через клеточную оболочку питательные вещества свободно проходят в клетку, а ненужные вещества выходят в окружающую среду. Часто поверх клеточной оболочки у бактерий вырабатывается дополнительный защитный слой слизи - капсула.

На поверхности клеточной оболочки некоторых бактерий имеются выросты - длинные жгутики (один, два и более) или короткие тонкие ворсинки. С их помощью бактерии передвигаются. В цитоплазме бактериальной клетки находится ядерное вещество - нуклеоид, которое несет наследственную информацию.

Каково строение бактериальных клеток, или Все ли так просто, как кажется

Ядерное вещество в отличие от ядра не отделено от цитоплазмы. В связи с отсутствием оформленного ядра и другими особенностями строения клетки все бактерии объединяются в отдельное царство живой природы - царство Бактерий.

Распространение бактерий и их роль в природе

Бактерии - самые распространенные на Земле живые существа. Они обитают повсюду: в воде, воздухе, почве. Бактерии способны жить даже там, где не могут выжить другие организмы: в горячих источниках, во льдах Антарктиды, в подземных нефтяных месторождениях и даже внутри атомных реакторов. Каждая бактериальная клетка очень мала, но общее количество бактерий на Земле огромно. Это
связано с высокой скоростью размножения бактерий. Бактерии выполняют в природе самые разнообразные функции.

Велика роль бактерий в образовании топливных полезных ископаемых. Миллионы лет они разлагали останки морских организмов и наземных растений. В результате жизнедеятельности бактерий сформировались залежи нефти, природного газа, угля.

Строение бактериальной клетки

Размеры - от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

Формы бактерий:
1 - кокки; 2 - бациллы; 3 - вибрионы; 4-7 - спириллы и спирохеты.

Строение бактериальной клетки:
1 - цитоплазматическая мемб-рана; 2 - клеточ-ная стенка; 3 - слизис-тая кап-сула; 4 - цито-плазма; 5 - хромо-сомная ДНК; 6 - рибосомы; 7 - мезо-сома; 8 - фото-синтети-ческие мемб-раны; 9 - вклю-чения; 10 - жгу-тики; 11 - пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий - слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) - одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды - внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили - прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Яндекс.ДиректВсе объявления

Спорообразование у бактерий - способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом - делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

Конъюгация - однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F+), так и в клетке-реципиенте (F-)).

Трансформация - однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки.

Клетка бактерии. Структура

В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция - перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты - либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов - 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид - оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

Строение бактериальной клетки

Размеры - от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

Формы бактерий:
1 - кокки; 2 - бациллы; 3 - вибрионы; 4-7 - спириллы и спирохеты.

Строение бактериальной клетки:
1 - цитоплазматическая мемб-рана; 2 - клеточ-ная стенка; 3 - слизис-тая кап-сула; 4 - цито-плазма; 5 - хромо-сомная ДНК; 6 - рибосомы; 7 - мезо-сома; 8 - фото-синтети-ческие мемб-раны; 9 - вклю-чения; 10 - жгу-тики; 11 - пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий - слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) - одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды - внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина.

Строение бактериальной клетки: особенности. Какое строение имеет бактериальная клетка?

Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили - прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Яндекс.ДиректВсе объявления

Спорообразование у бактерий - способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом - делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

Конъюгация - однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F+), так и в клетке-реципиенте (F-)).

Трансформация - однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция - перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты - либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов - 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид - оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

Клетка прокариотических организмов имеет сложное строго упорядоченное строение и обладает принципиальными особенностями ультраструктурной организации и химического состава.

Структурные компоненты бактериальной клетки делят на основные и временные (рис. 2). Основными структурами являются: клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид; временные — капсула, слизистый чехол, жгутики, ворсинки, эндоспоры, образующиеся лишь на определенных этапах жизненного цикла бактерий, у некоторых видов они отсутствуют полностью.

У прокариотической клетки структуры, расположенные снаружи от цитоплазматической мембраны, называют поверхностными (клеточная стенка, капсула, жгутики, ворсинки).

Термин «оболочка» в настоящее время используется для обозначения клеточной стенки и капсулы бактерий или только клеточной стенки, цитоплазматическая мембрана не входит в состав оболочки и относится к протопласту.

Клеточная стенка — важный структурный элемент бактериальной клетки, располагающийся между цитоплазматической мембраной и капсулой; у бескапсульных бактерий — это внешняя оболочка клетки. Она обязательна для всех прокариот, за исключением микоплазм и L-форм бактерий. Выполняет ряд функций: защищает бактерии от осмотического шока и других повреждающих факторов, определяет их форму, участвует в метаболизме; у многих видов патогенных бактерий токсична, содержит поверхностные антигены, а также несет на поверхности специфические рецепторы для фагов. В клеточной стенке бактерий имеются поры, которые участвуют в транспорте экзотоксинов и других экзобелков бактерий. Толщина клеточной стенки 10—100 нм, и на ее долю приходится от 5 до 50 % сухих веществ клетки.

Основным компонентом клеточной стенки бактерий является пептидогликан, или муреин (лат. murus — стенка), — опорный полимер, имеющий сетчатую структуру и образующий ригидный (жесткий) наружный каркас бактериальной клетки. Пептидогликан имеет основную цепь (остов), состоящую из чередующихся остатков N-ацстил-М-глюкозамина и N-ацетилмурамовой кислоты, соединенных 1,4-гликозидными связями, идентичные тетрапептидные боковые цепочки, прикрепляющиеся к молекулам N-ацстилмурамовой кислоты, и короткие поперечные пептидные мостики, связывающие полисахаридные цепи. Два типа связей (гликозидные и пептидные), которые соединяют субъединицы пептидогликана, придают этому гетерополимеру структуру молекулярной сети. Остов пептидогликанового слоя у всех видов бактерий одинаков; тетрапептидные белковые цепочки и пептидные (поперечные) у неодинаковых видов различны.

По тинкториальным свойствам все бактерии подразделяются на две группы: грамположительные и грамотрицателъные. В 1884 г. X. Грам предложил метод окраски, который был использован для дифференцирования бактерий. Сущность метода состоит в том, что грамположительные бактерии прочно фиксируют комплекс генцианвиолета и йода, не подвергаются обесцвечиванию этанолом и поэтому не воспринимают дополнительный краситель фуксин, оставаясь окрашенными в фиолетовый цвет. У грамотрицательных бактерий этот комплекс легко вымывается из клетки этанолом, и они при дополнительном нанесении фуксина окрашиваются в красный цвет. У некоторых бактерий положительная окраска по Граму наблюдается только в стадии активного роста. Способность прокариот окрашиваться по методу Грама или обесцвечиваться этанолом определяется спецификой химического состава и ультраструктуры их клеточной стенки. Пептидогликан у грамположительных бактерий — основной компонент клеточной стенки и составляет от 50 до 90 %, у грамотрицательных — 1 —10 %. Структурные микрофибриллы пептидогликана грамотрицательных бактерий сшиты менее компактно, поэтому поры в их пептидогликановом слое значительно шире, чем в молекулярном каркасе грамположитсльных бактерий. При такой структурной организации пептидогликана фиолетовый комплекс генцианвиолета и йода у грамотрицательных бактерий будет вымываться быстрее.

Клеточная стенка грамположительных бактерий плотно прилегает к цитоплазматической мембране, массивна, се толщина находится в пределах 20—100 нм. Для нее характерно наличие тейхоевых кислот, они связаны с пептидогликаном и представляют собой полимеры трехатомного спирта — глицерина или пятиатомного спирта — рибита, остатки которых соединены фосфодиэфирными связями. Тейхоевые кислоты связывают ионы магния и участвуют в транспорте их в клетку. В составе клеточной стенки грамположительных прокариот в небольших количествах также найдены полисахариды, белки и липиды.

Рис. 2. Схема строения прокариотической клетки:

1 — капсула; 2 — клеточная стенка; 3 — цитоплазматическая мембрана; 4 — нуклеоид; 5 — цитоплазма; 6 — хроматофоры; 7 — тилакоиды; 8 — мезосома; 9 — рибосомы; 10 — жгутики; 11— базальное тельце; 12 — пили; 13 — включение серы; 14 — капли жира; 15 — гранулы полифосфата; 16 — плазмида

Клеточная стенка грамотрицательных бактерий многослойна, толщина ее 14—17 нм. Внутренний слой — пептидогликан, который образует тонкую (2 нм) непрерывную сетку, окружающую клетку. Пептидогликан содержит только мезодиаминопимелиновую кислоту и не имеет лизина. Внешний слой клеточной стенки — наружная мембрана — состоит из фосфолипидов, липополисахарида, липопротеина и белков. В наружной мембране содержатся белки основы (матричные), они прочно связаны с пептидогликановым слоем. Одной из их функций является формирование в мембране гидрофильных пор, через которые осуществляется диффузия молекул с массой до 600, иногда 900. Матричные белки, кроме того, выполняют еще роль рецепторов для некоторых фагов. Липополисахарид (ЛПС) клеточных стенок грамотрицательных бактерий состоит из липида А и полисахарида. Токсичный для животных ЛПС получил название эндотоксина. Тейхоевые кислоты у грамотрицательных бактерий не обнаружены.

Структурные компоненты клеточной стенки грамотрицальных бактерий отграничены от цитоплазматической мембраны и разделены промежутком, называемым периплазмой или периплазматическим пространством.

Протопласты и сферопласты. Протопласты — формы прокариот, полностью лишенные клеточной стенки, образующиеся обычно у грамположительных бактерий. Сферопласты — бактерии с частично разрушенной клеточной стенкой. У них сохраняются элементы наружной мембраны. Наблюдаются у грамотрицательных бактерий и значительно реже у грамположительных. Образуются в результате разрушения пептидогликанового слоя литическими ферментами, например лизоцимом, или блокирования биосинтеза пептидогликана антибиотиком пенициллином и др. в среде с соответствующим осмотическим давлением.

Протопласты и сферопласты имеют сферическую или полусферическую форму и в 3—10 раз крупнее исходных клеток. В обычных условиях наступает осмотический лизис и они погибают. В условиях повышенного осмотического давления способны некоторое время переживать, расти и даже делиться. При снятии фактора, разрушающего пептидогликан, протопласты, как правило, отмирают, но могут превращаться в L-формы; сферопласты легко реверсируют в исходные бактерии, иногда трансформируются в L-формы или же гибнут.

L-Формы бактерий. Это фенотипические модификации, или мутанты, бактерий, частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки. Таким образом, L-формы — бактерии, дефектные по клеточной стенке. Свое название они получили в связи с тем, что были выделены и описаны в институте Листера в Англии в 1935 г. Образуются при воздействии L-трансформирующих агентов — антибиотиков (пенициллина, полимиксина, бацитрацина, венкомицина, стрептомицина), аминокислот (глицина, метионина, лейцина и др.), фермента лизоцима, ультрафиолетовых и рентгеновых лучей. В отличие от протопластов и сферопластов L-формы обладают относительно высокой жизнеспособностью и выраженной способностью к репродукции. По морфологическим и культуральным свойствам они резко отличаются от исходных бактерий, что обусловлено утратой клеточной стенки и изменением метаболической активности.

L-Формы бактерий полиморфны. Встречаются элементарные тельца размером 0,2—1 мкм (минимальные репродуцирующие элементы), шары — 1—5, большие тела — 5—50, нити — до 4 мкм и более. Клетки L-форм имеют хорошо развитую систему внутрицитоплазматических мембран и миелиноподобные структуры. Вследствие дефекта клеточной стенки осмотически неустойчивы и их можно культивировать только на специальных средах с высоким осмотическим давлением; они проходят через бактериальные фильтры.

Различают стабильные и нестабильные L-формы бактерий. Первые полностью лишены ригидной клеточной стенки, что сближает их с протопластами; они крайне редко реверсируют в исходные бактериальные формы. Вторые могут обладать элементами клеточной стенки, в чем они проявляют сходство со сферопластами; в отсутствие фактора, вызвавшего их образование, реверсируют в исходные клетки.

Процесс образования L-форм получил название L-трансформации или L-индукции. Способностью к L-трансформации обладают практически все виды бактерий, в том числе и патогенные (возбудители бруцеллеза, туберкулеза, листерии и др.).

L-Формам придается большое значение в развитии хронических рецидивирующих инфекций, носительстве возбудителей, длительной персистенции их в организме. Доказана трансплацентарная инвазивность элементарных телец L-форм бактерий.

Инфекционный процесс, вызванный L-формами бактерий, характеризуется атипичностью, длительностью течения, тяжестью заболевания, трудно поддается химиотерапии.

Капсула — слизистый слой, расположенный над клеточной стенкой бактерии. Вещество капсулы четко отграничено от окружающей среды. В зависимости от толщины слоя и прочности соединения с бактериальной клеткой различают макрокапсулу, толщиной более 0,2 мкм, хорошо различимую в световом микроскопе, и микрокапсулу, толщиной менее 0,2 мкм, обнаруживаемую лишь при помощи электронного микроскопа или выявляемую химическими и иммунологическими методами. Макрокапсулу (истинную капсулу) образуют В. anlhracis, C1. perfringens, микрокапсулу — Escherichia coJi. Капсула не является обязательной структурой бактериальной клетки: потеря ее не приводит к гибели бактерии. Известны бескапсульные мутанты бактерий, например сибиреязвенный вакцинный штамм СТИ-1.

Вещество капсул состоит из высокогидрофильных мицелл, химический же состав их весьма разнообразен. Основные компоненты большинства капсул прокариот — гомо- или гетсрополисахариды (энтсробактерии и др.). У некоторых видов бацилл капсулы построены из полипептида. Так, в состав капсулы В. anthracis входит полипептид Д-глутаминовой кислоты (правовращающий изомер). В состав микрокапсулы микобактерий туберкулеза млекопитающих входят гликопептиды, представленные сложным эфиром трегалозы и миколовой кислоты (корд-фактор).

Синтез капсулы — сложный процесс и у различных прокариот имеет свои особенности; считают, что биополимеры капсулы синтезируются на наружной поверхности цитоплазматической мембраны и выделяются на поверхность клеточной стенки в определенных специфических ее участках.

Существуют бактерии, синтезирующие слизь, которая откладывается на поверхности клеточной стенки в виде бесструктурного слоя полисахаридной природы. Слизистое вещество, окружающее клетку, по толщине часто превосходит диаметр последней. У сапрофитной бактерии лейконостока наблюдается образование одной капсулы для многих особей. Такие скопления бактерий, заключенных в общую капсулу, называются зооглеями.

Капсула — полифункциональный органоид, выполняющий важную биологическую роль. Она является местом локализации капсульных антигенов, определяющих вирулентность, антигенную специфичность и иммуногенность бактерий. Утрата капсулы у патогенных бактерий резко снижает их вирулентность, например у бескапсульных штаммов бациллы антракса. Капсулы обеспечивают выживание бактерий, защищая их от механических повреждений, высыхания, заражения фагами, токсических веществ, а у патогенных форм — от действия защитных сил макроорганизма: инкапсулированные клетки плохо фагоцитируются. У некоторых видов бактерий, в том числе и патогенных, способствует прикреплению клеток к субстрату.

В ветеринарной микробиологии выявление капсулы используют в качестве дифференциального морфологического признака возбудителя при исследовании на сибирскую язву.

Для окрашивания капсул применяют специальные методы — Романовского — Гимзы, Гинса — Бурри, Ольта, Михина и др.

Микрокапсулу и слизистый слой определяют серологическими реакциями (РА), антигенные компоненты капсулы идентифицируют при помощи иммунофлюоресцентного метода (РИФ) и РДД.

Жгутики — органоиды движения бактерий, представленные тонкими, длинными, нитевидными структурами белковой природы. Их длина превышает бактериальную клетку в несколько раз и составляет 10—20 мкм, а у некоторых спирилл достигает 80— 90 мкм. Нить жгутика (фибрилла) — полный спиральный цилиндр диаметром 12—20 нм. У вибрионов и протея нить окружена футляром толщиной 35 нм.

Жгутик состоит из трех частей: спиральной нити, крюка и базального тельца. Крюк — изогнутый белковый цилиндр, выполняющий функцию гибкого связывающего звена между базальным тельцем и жесткой нитью жгутика. Базальное тельце — сложная структура, состоящая из центрального стержня (оси) и колец.

Рис. 3. Жгутики:

а — монотрихи; б — амфитрихи; в — лофотрихи; г — перитрихи

Жгутики не являются жизненно важными структурами бактериальной клетки: существуют фазовые вариации бактерий, когда в одной фазе развития клетки они имеются, у другой — отсутствуют. Так, у возбудителя столбняка в старых культурах преобладают клетки без жгутиков.

Количество жгутиков (от I до 50 и более) и места их локализации у бактерий разных видов неодинаковы, но стабильны для одного вида. В зависимости от этого выделяют следующие группы жгутиковых бактерий: моиотрихи — бактерии с одним полярно расположенным жгутиком; амфитрихи — бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах; лофотрихи — бактерии, имеющие пучок жгутиков на одном конце клетки; перитрихи — бактерии с множеством жгутиков, расположенных по бокам клетки или на всей ее поверхности (рис. 3). Бактерии, не имеющие жгутиков, называют атрихиями.

Будучи органами движения, жгутики типичны для плавающих палочковидных и извитых форм бактерий и лишь в единичных случаях встречаются у кокков. Они обеспечивают эффективное движение в жидкой среде и более медленное перемещение по поверхности твердых субстратов. Скорость движения монотрихов и лофотрихов достигает 50 мкм/с, амфитрихи и перитрихи движутся медленнее и обычно за 1 с проходят расстояние, равное размерам их клетки.

Бактерии передвигаются беспорядочно, однако они способны к направленным формам движения — таксисам, которые определяются внешними стимулами. Реагируя на различные факторы окружающей среды, бактерии за короткое время локализуются в оптимальной зоне обитания. Таксис может быть положительным и отрицательным. Принято различать: хемотаксис, аэротаксис, фототаксис, магнототаксис. Хемотаксис вызывается разницей в концентрации химических веществ в среде, аэротаксис — кислорода, фототаксис — интенсивностью освещения, магнитотаксис определяется способностью микроорганизмов ориентироваться в магнитном поле.

Выявление подвижных жгутиковых форм бактерий имеет значение для их идентификации при лабораторной диагностике инфекционных болезней.

Пили (фимбрии, ворсинки) — прямые, тонкие, полые белковые цилиндры толщиной 3—25 нм и длиной до 12 мкм, отходящие от поверхности бактериальной клетки. Образованы специфическим белком — пилином, берут начало от цитоплазматической мембраны, встречаются у подвижных и неподвижных форм бактерий и видимы только в электронном микроскопе (рис. 4). На поверхности клетки может быть от 1—2, 50—400 и более пилей до нескольких тысяч.

Рис. 4. Пили

Существует два класса пилей: половые (секспили) и пили общего типа, которые чаще называют фимбриями. У одной и той же бактерии могут быть пили разной природы. Половые пили возникают на поверхности бактерий в процессе конъюгации и выполняют функцию органелл, через которые происходит передача генетического материала (ДНК) от донора к реципиенту.

Пили общего типа располагаются перитрихиально (кишечная палочка) или на полюсах (псевдомонады); одна бактерия их может содержать сотни. Они принимают участие в слипании бактерий в агломераты, прикреплении микробов к различным субстратам, в том числе к клеткам (адгезивная функция), в транспорте метаболитов, а также способствуют образованию пленок на поверхности жидких сред; вызывают агглютинацию эритроцитов.

Цитоплазматическая мебрана и ее производные. Цитоплазматическая мембрана (плазмолемма) — полупроницаемая липопротеидная структура бактериальных клеток, отделяющая цитоплазму от клеточной стенки. Она является обязательным полифункциональным компонентом клетки и составляет 8—15 % ее сухой массы. Разрушение цитоплазматической мембраны приводит к гибели бактериальной клетки. На ультратонких срезах в электронном микроскопе выявляется ее трехслойное строение — два ограничивающих осмиофильных слоя, толщиной 2—3 нм каждый, и один осмиофобный центральный слой толщиной 4—5 нм.

Цитоплазматическая мембрана в химическом отношении — белково-липидный комплекс, состоящий из 50—75 % белков и 15—50 % липидов. Основная часть мембранных липидов (70— 90 %) представлена фосфолипидами. Она построена из двух мономолекулярных белковых слоев, между которыми расположен липидный слой, состоящий из двух рядов правильно ориентированных молекул липидов.

Цитоплазматичсская мембрана служит осмотическим барьером клетки, контролирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу, в ней содержатся субстратспецифические ферменты-пермеазы, осуществляющие активный избирательный перенос органических и неорганических молекул.

Ферменты цитоплазматической мембраны катализуют конечные этапы синтеза мембранных липидов, компонентов клеточной стенки, капсулы и экзоферментов; на мембране локализованы ферменты окислительного фосфорилирования и ферменты транспорта электронов, ответственные за синтез энергии.

В процессе роста клетки цитоплазмзтическая мембрана образует многочисленные инвагинаты, формирующие внутрицитоплазмати-ческие мембраны структуры. Локальные инвагинаты мембраны получили название мезосом. Эти структуры хорошо выражены у грамположительных бактерий, хуже — у грамотрицательных и плохо — у риккетсий и микоплазм.

Установлена связь мезосом с хромосомой бактерии, такие структуры называются нуклеоидосомеши. Интегрированные с нуклеоидом мезосомы принимают участие в кариокинезе и цитокинезе микробных клеток, обеспечивая распределение генома после окончания репликации ДНК и последующее расхождение дочерних хромосом. Мезосомы, как и цитоплазматическая мембрана, являются центрами дыхательной активности бактерий, поэтому их иногда называют аналогами митохондрий. Однако значение мезосом окончательно еще не выяснено. Они увеличивают рабочую поверхность мембран, возможно, выполняют только структурную функцию, производя разделение бактериальной клетки на относительно обособленные отсеки, что создает более благоприятные условия для протекания ферментативных процессов. У патогенных бактерий обеспечивают транспорт белковых молекул экзотоксинов.

Цитоплазма — содержимое бактериальной клетки, отграниченное цитоплазматической мембраной. Состоит из цитозоля — гомогенной фракции, включающей растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма, и структурных элементов — рибосом, внутрицитоплазматических мембран, включений и нуклеоида.

Рибосомы — органоиды, осуществляющие биосинтез белка. Состоят из белка и РНК, соединенных в комплекс водородными и гидрофобными связями. Бактериальные рибосомы — гранулы диаметром 15—20 нм, имеют константу седиментации 70S и образованы из двух рибонуклеопротеидных субъединиц: 30S и 50S. Одна бактериальная клетка может содержать от 5000—50 000 рибосом, посредством и-РНК они объединяются в полисомы-агрегаты, состоящие из 50—55 рибосом, обладающих высокой белоксинтезирующей активностью.

В цитоплазме бактерий выявляются различного типа включения. Они могут быть твердыми, жидкими и газообразными, с белковой мембраной или без нее и присутствовать непостоянно. Значительная часть их представляет собой запасные питательные вещества и продукты клеточного метаболизма. К запасным питательным веществам относятся: полисахариды, липиды, полифосфаты, отложения серы и др. Из включений полисахаридной природы чаще обнаруживаются гликоген и крахмалоподобное вещество гранулеза, которые служат источником углерода и энергетическим материалом. Липиды накапливаются в клетках в виде гранул и капелек жира, к ним относятся окруженные мембраной гранулы поли-/3-оксимас-ляной кислоты, резко преломляющие свет и хорошо различимые в световом микроскопе. Выявляются и бациллы антракса и аэробных спорообразующих сапрофитных бактерий. Микобактерии в качестве запасных веществ накапливают воски. В клетках некоторых кори-небактерий, спирилл и других содержатся гранулы волютина, образованные полифосфатами. Они характеризуются метахромазией: толуидиновый синий и метиленовый синий окрашивают их в фиолетово-красный цвет. Волютиновые гранулы играют роль фосфатных депо.

К включениям, окруженным мембраной, также относятся газовые вакуоли, или аэросомы, они снижают удельную массу клеток, встречаются у водных прокариот.

Нуклеоид — ядро у прокариот. Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК длиной 1,1 —1,6 нм, которую рассматривают как одиночную бактериальную хромосому, или генофор.

Нуклеоид у прокариот не отграничен от остальной части клетки мембраной — у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий — на мезосомс. Бактериальная хромосома реплицируется поликонсервативным способом: родительская двойная спираль ДНК раскручивается и на матрице каждой полинуклеотидной цепи собирается новая комплементарная цепочка. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро — дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки.

Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы — плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации.