Как подключить однофазный двигатель с тремя проводами. Как определить рабочую и пусковую обмотки




Однофазный асинхронный двигатель - маломощный механизм до 10 кВт. Однако благодаря своей компактности и особенностями действия, его использование очень большое.

Сфера применения: бытовые приборы с однофазным током. Однофазные асинхронные электродвигатели применяются для холодильников, центрифуг, стиральных машин. Часто используется для маломощных вентиляторов.

Приборы с одной фазой используются и в промышленности, но не так часто, как многофазные агрегаты.

  • Типы однофазных моторов
  • Принцип работы

Устройство и схема подключения АД

Интересно! Трехфазный асинхронный двигатель можно использовать для работы в однофазном режиме. Предварительно необходимо провести расчет.

У статора две электрообмотки. Одна из них рабочая, которая является основной. Вторая пусковая и нужна, чтобы осуществлять пуск устройства. Отличие однофазовых моторов - отсутствие момента впуска. Ротор напоминает беличью клетку по структуре.Ток одной фазы производит магнитное поле. Оно состоит из двух полей. Включая устройство, ротор двигателя неподвижен.


Расчет результирующего момента при неподвижном роторе лежит в основе магнитных полей образующих два вращающихся момента.

Противоположные моменты обозначаются М.

n – частота вращения


Если неподвижную часть задействовать, тогда наступит вращающий момент. Из-за его недоступности при запуске, двигатели оборудованы дополнительным пусковым устройством.

Отличие однофазных асинхронных двигателей от трёхфазных - особенности статора. Пазы имеютдвухфазовую обмотку. Одна будет основной или рабочей, а вторая именуется пусковой.

Магнитные оси находятся по отношению друг к другу на 90 градусов. Включенная рабочая фаза не вызывает вращение ротора по причине неподвижной оси магнитного поля.

Существуют специальные программы для расчета обмоток статора.

Типы однофазных моторов

Различают бифилярный и конденсаторный механизм.

  1. Бифилярный пуск

Бифилярная обмотка не используется при постоянном режиме. Иначе значение КПД снижается. Набирая обороты, она обрывается. Обмотка пуска включается на несколько секунд. Расчет работы по 3 секунды до 30 раз в 60 минут. Превышение запусков могут привести к перегреву витков.

  1. Конденсаторный пуск

Фаза расщепленная, цепь вспомогательной обмотки включается во время запуска. Для достижения пускового момента необходимо создать круговое магнитное поле. Использование конденсатора обеспечивает лучший пусковой момент. Двигатели с включенными конденсаторами в цепи являются конденсаторными. Работают на основе вращения поля магнитов. У конденсаторного устройства две катушки, которые всегда под напряжением.

Принцип работы

В основе принципа действия находится короткозамкнутый ротор. Магнитное поле представлено в виде двух кругов с противоположными последовательностями, то есть поля вращаются в разные стороны, но с одинаковой скоростью.Если ротор предварительно разогнать в нужную сторону, то он продолжит вращение в ту же сторону.


Поэтому запускают однофазный АД, нажав кнопку пуска. При этом вызывается возбуждение в статоре. Токи активируют магнитное поле вращаться, а в воздушном зазоре возникает магнитная индукция. За несколько секунд разгон ротора равняется номинальной скорости.

Отпуская кнопку впуска, двигатель переходит с режима двух фаз на одну фазу. Однофазовый режим поддерживается составляющей переменного поля магнитов, которая вращается быстрее ротора из-за скольжения.

Для улучшения работы однофазного АД встраивается центробежный выключатель и реле с размыкающими контактами.

Центробежный выключатель прерывает пуск статорной обмотки на автомате, если скорость ротора номинальная. А тепловое реле отключает двухфазную обмотку от сети при их перегреве.

Изменение направления роторного вращения получается при перемене направления тока в любой из фаз обмотки при запуске. Достигается это нажатием пусковой кнопки и перестановки двух или одной металлических пластин.

Чтобы образовался фазовый сдвиг необходимо добавить в цепь резистор, дроссель иди конденсатор. Все они являются фазозаменяющими элементами.

Во время запуска двигателя работает две фазы, а далее одна.

Преимущества:

  • большая двигательная способность благодаря неимению коллектора;
  • небольшой размер и масса;
  • недорогая стоимость в сравнении с многофазными;
  • питание от синусоидальной сети;
  • простая конструкция из-за короткозамкнутого ротора.

Недостатки:

  • отсутствие или малый пусковой момент, а также низкий коэффициент полезного действия;
  • узкий диапазон регулировки частоты вращения.

Совет! Чтобы приобрести качественный однофазный мотор, выбирайте надежного производителя. Например, АИРЕ, Siemens, Emod. Проверяйте наличие документов.

Стоимость однофазного асинхронного двигателя зависит от его мощности. Средняя цена варьирует от 2,5 тысячи рублей до 9 тысяч.Приобрести однофазовые асинхронные двигатели можно в магазинах или в интернете.

При правильном расчете и принципе действия, однофазный асинхронный двигатель будет служить долго и эффективно.

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

  • Обмотки электромотора
  • Конденсаторы
  • Косвенное включение
  • Заключение

Обмотки электромотора

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.


Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение


Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.


Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

  • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки;
  • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

Заключение

Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

Для освещения и общих бытовых целей в домах, офисах, магазинах, а также в небольших производствах, широко используется однофазная система электропитания наряду с трёхфазной системой. Однофазная система применяется там, где потребляемая мощность мала, где нет необходимости в использовании трёхфазных электрических цепей, где нет постоянного круглосуточного потребления большой мощности.

Однофазные двигатели просты в конструкции и эксплуатации, что в свою очередь даёт экономию в их эксплуатации, ремонте и обслуживании в сравнении с аналогичными трёхфазными двигателями. Обычно в бытовой технике, такой как пылесосы, вентиляторы, стиральные машины, фены, центробежные насосы, маленькие игрушки и т.д. используются именно однофазные электрические машины.

Однофазные асинхронные двигатели классифицируются следующим образом:

  • Однофазные асинхронные двигатели или асинхронные двигатели.
  • Однофазные синхронные двигатели.
  • Коллекторные двигатели.

Эта статья даёт основное представление об однофазном асинхронном двигателе, его описание и принцип его работы.

Конструкция однофазного асинхронного двигателя

Как и любой другой электрический двигатель, однофазный асинхронный двигатель состоит из двух основных частей, а именно из ротора и статора. Статор является неподвижной частью двигателя, а ротор подвижной частью. Питание однофазным напряжением подается на статор асинхронного двигателя, который содержит обмотки для создания магнитного поля. Ротор представляет собой вращающуюся часть, которая соединяется с механической нагрузкой. Ротор однофазного асинхронного двигателя является короткозамкнутым, то есть содержит короткозамкнутую обмотку, обычно по своему виду напоминающую беличью клетку (колесо).

Конструкция однофазного асинхронного двигателя практически аналогичная конструкции трёхфазного электродвигателя с короткозамкнутым ротором. Единственное отличие – это наличие двух обмоток для одной фазы питания, в то время как в трёхфазном двигателе на каждую фазу приходится по одной обмотке.

Статор однофазного асинхронного двигателя

Статор однофазного асинхронного двигателя изготовлен из ламинированных штампованных листов электротехнической стали. Каждый лист изолирован от предыдущего и последующего слоем лака или иного изолирующего немагнитного покрытия. Изготовление статора из многих тонких пластин обусловлено необходимостью избавится от влияния вихревых токов. Чем больше пластин и чем они тоньше, тем меньшие вихревые токи наводятся в статоре, что положительно влияет на эффективность преобразования электрической энергии в механическую энергию. В том случае, если статор изготовлен из цельного куска электротехнической стали или иного ферромагнитного материала, значительная часть электрической энергии будет расходоваться на нагрев статора, а это снизит КПД двигателя и может разрушить изоляцию обмоток статора.

Собранный пакет статора содержит слоты (пазы) для укладки в них обмотки, таким образом, получается, что статор является магнитопроводом наподобие сердечника трансформатора, а обмотка статора подобна первичной обмотке трансформатора. Где же расположена вторичная обмотка? Это нужно понять. Вторая обмотка короткозамкнута и она расположена на роторе, а магнитная связь между статором и ротором осуществляется через воздушный зазор.


При подаче питания на обмотку статора, создаётся магнитное поле, которое вращает ротор со скоростью чуть меньшей, чем синхронная скорость N S (об/мин = rpm). Эта скорость определяется по формуле:


Конструкция статора однофазного двигателя аналогична конструкции трёхфазного двигателя, за исключением обмоток статора:

  • Во-первых, однофазные асинхронные двигатели содержат в основном концентрические обмотки, так как число витков обмотки может быть легко отрегулировано, то магнитодвижущая сила (МДС)(MMF) распределяется практически синусоидально.
  • Полюса двигателя смещаются, за исключением того случая, когда асинхронный двигатель имеет две статорные обмотки, основную и вспомогательную. Эти две обмотки располагаются в пространстве статора под прямым углом относительно друг друга.

Ротор однофазного асинхронного двигателя

Конструкция ротора однофазного асинхронного двигателя аналогична короткозамкнутому ротору трёхфазного асинхронного двигателя. Ротор имеет цилиндрическую форму и прорези по всей периферии. Пазы сделаны не параллельно оси вращения ротора, а со скосом. Такое перекашивание предотвращает магнитное запирание ротора в поле статора, тем самым облегчая первоначальный пуск двигателя. Пуск и работа асинхронного двигателя становится более гладкой и спокойной, без чрезмерных перегрузок на старте и в работе.

Обмотка ротора в виде беличьей клетки состоит из алюминиевых, медных или латунных стержней, которые размещаются в пазах на периферии ротора. Эти стержни постоянно замкнуты медными или алюминиевыми кольцами с торцов ротора и иначе называются – конечными кольцами. Внешний вид такой обмотки напоминает беличье колесо, в котором белка бегает по кругу, перебирая лапками те самые стержни. Такое сходство и послужило названием для короткозамкнутого ротора – короткозамкнутый ротор типа «беличья клетка».

Так как обмотка ротора закорочена концевыми кольцами и состоит из многих стержней соединённых параллельно друг другу в одну цепь, то электрическое сопротивление ротора очень мало. Такая конструкция ротора не позволяет включать в обмотку ротора дополнительные сопротивления, потому как отсутствуют контактные кольца и щётки.

Простота конструкции и отсутствие контактных колец и щёток в конструкции однофазного асинхронного двигателя делает его дешёвым, надёжным и простым в эксплуатации.

Принцип работы однофазного асинхронного двигателя

Необходимо помнить, что для работы любого электродвигателя, постоянного (DC) или переменного тока (AC), требуется наличие двух магнитных потоков, взаимодействие которых создаёт крутящий момент. Существование крутящего момента является необходимым параметром для работы любого двигателя, чтобы производить вращение.

Когда через обмотки статора начинает протекать электрический ток, он в свою очередь создаёт переменный магнитный поток, который называется главным потоком. Этот главный поток оказывает воздействие на проводники ротора в соответствии с законом электромагнитной индукции Фарадея. В проводниках ротора наводится ЭДС, а так как обмотка ротора короткозамкнутая, то в ней начинает протекать электрический ток, который в свою очередь также создаёт встречный магнитный поток, действующий против главного потока. Поскольку второй поток создаётся по причине первого потока, а значит, они существуют не синхронно, то именно поэтому такой двигатель называется асинхронным.

Взаимодействие двух этих потоков, один от статора и второй от ротора, создают желаемый крутящий момент. Двигатель начинает вращаться.

Почему однофазный асинхронный двигатель не способен к самозапуску?

Согласно теории о двойном поле вращения, любая составляющая (переменная) поля может быть разложена на два компонента, где каждый компонент будет равен половине максимальной величины взятой составляющей. Оба этих компонента будут вращаться в противоположных друг к другу направлениях. Таким образом, поток Ф можно разложить на две составляющие:

Каждый из этих компонентов потока вращается (движется) в противоположном направлении, то есть, если Ф м /2 вращается в направлении по часовой стрелке , то другой поток Ф м /2 вращается в направлении против часовой стрелки .

Когда от источника переменного тока подается ток на обмотки статора однофазного асинхронного двигателя, он производит поток Ф м . В соответствии с теорией двойного поля вращения (double field revolving theory ) этот поток может быть разложен на два потока встречно направленных друг к другу величины Ф м /2 и движущихся синхронно со скоростью N. Назовем эти два компонента Ф f (front) и Ф b (back). Результирующий поток от этих двух потоков в любой момент времени даёт значение магнитного потока статора.

В момент запуска двигателя эти два компонента потока направлены точно друг против друга. Они равны по величине и уравновешивают друг друга и, следовательно, эффективность крутящего момента, который испытывает ротор, равна нулю. Именно поэтому не происходит самозапуска однофазного асинхронного двигателя.

Способы создания самозапускающихся однофазных асинхронных двигателей

Из выше написанного можно легко сделать вывод, что однофазные асинхронные двигатели не самозапускаются потому как производимый статором переменный поток состоит из двух компонентов, которые компенсируют друг друга и, следовательно, нет эффективного крутящего момента.

Решение этой проблемы состоит в том, чтобы создать именно вращающийся магнитный поток, а не пульсирующий. Тогда двигатель станет самозапускающимся. Для этого надо сделать так, чтобы одна из компонент имела перевес относительно другой компоненты потока в ту или другую сторону. Изначально две компоненты потока находятся в противофазе относительно друг друга, то есть, сдвинуты на 180 градусов. Это можно сделать, добавив дополнительную компоненту потока, которую после пуска можно убрать и двигатель продолжит работать самостоятельно.

В зависимости от способов осуществления самозапуска однофазного асинхронного двигателя существует четыре вида двигателя:

  1. С раздельными обмотками (Split phase induction motor).
  2. С пусковым конденсатором (Capacitor start inductor motor).
  3. С пусковым конденсатором и рабочей обмоткой (Capacitor start capacitor run induction motor).
  4. Со смещенным полюсом (Shaded pole induction motor).

Сравнение однофазного и трёхфазного электродвигателей

  1. Однофазные асинхронные электродвигатели просты в конструкции, надежны и экономичны в работе, обслуживании и эксплуатации в сравнении с трёхфазными асинхронными двигателями.
  2. Коэффициент мощности однофазных асинхронных двигателей ниже в сравнении с трёхфазными асинхронными двигателями такой же мощности.
  3. Однофазные асинхронные двигатели таких же габаритов, что и трёхфазные асинхронные двигатели выдают около 50% мощности.
  4. Низкое значение пускового момента для однофазных асинхронных двигателей.
  5. Эффективность (КПД) однофазных асинхронных двигателей меньше в сравнении с эффективностью трёхфазных асинхронных двигателей.

Все теги раздела Электротехника .

26. СХЕМЫ ОБМОТОК ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

В однофазных двигателях с пусковой обмоткой главная обмотка обычно занимает 2 / 3 , а вспомогательная - 1 / 3 общего числа пазов статора. В этих двигателях число пазов на полюс для каждой фазы определяется по формулам:

где q A - число пазов на полюс главной фазы; q В - число пазов на полюс вспомогательной фазы; z A = 2 / 3 - число пазов, занимаемых главной фазой; z B = 1 / 3 - число пазов, занимаемых вспомогательной фазой; z - общее число пазов; - число полюсов.

В однофазных конденсаторных двигателях пазы статора обычно делят поровну между обеими фазами, т. е. z A =z B , и число пазов на полюс определяется по формуле

Шаг по пазам для однофазных обмоток определяется так же, как и для трехфазных. Двухслойные обмотки выполняются с укорочением обычно на 1 / 3 полюсного деления с равными шагами для главной и вспомогательной обмоток. Шаг двухслойной обмотки

Соединение катушечных групп и образование параллельных ветвей в однофазных обмотках производится по тем же правилам, что и для трехфазных обмоток.

При построении схем двигателей с повышенным сопротивлением пусковой фазы надо учитывать наличие в ней бифилярной обмотки.

Для удобства ремонта пусковую обмотку обычно располагают поверх главной (ближе к клину).

Примерный порядок составления схемы однофазной обмотки двигателя с пусковым элементом. Последовательность составления схемы однослойной обмотки разберем на примере

2р = 4, z = 24.

Сначала находят число пазов, занимаемых главной фазой,

Число пазов на полюс главной фазы

Число пазов на полюс вспомогательной фазы в два раза меньше, чем главной, т. е.

Далее на чертеже надо представить последовательность чередования пазов главной и вспомогательной фаз (рис. 60, а) и проставить направление тока в главной фазе, исходя из правил: под соседними полюсами направление тока меняется на противоположное (рис. 60, б ). Чтобы на схеме не оказалась разрезанной катушка главной фазы при выполнении наиболее распространенного типа обмотки вразвалку, первую катушечную группу разбивают на две половины (пазы 1,2 и 23,24).

В соответствии с проставленным направлением тока соединяют пазовые части катушек, в результате этого образуются катушечные группы или полугруппы. При этом возможны различные варианты. При диаметральном шаге

одинаковом для всех катушек, получается простая шаблонная обмотка (рис. 60, в ), число катушечных групп которой равно числу пар полюсов р. Но такая обмотка почти не применяется ввиду больших размеров лобовых частей. Если разделить каждую катушечную группу на две полугруппы, получим шаблонную обмотку вразвалку (рис. 60, г) с меньшим шагом и меньшей длиной витка. Однако из-за большой компактности лобовых частей чаще применяется концентрическая обмотка вразвалку (рис. 60,5). При больших значениях q A используется также концентрическая обмотка, у которой катушечная группа подразделяется на три полугруппы (см. рис. 68). По виду лобовых частей эта обмотка напоминает трехплоскостную трехфазную концентрическую.

Начало фазы может быть в принципе выбрано из любого паза, исходя из удобства выполнения обмотки. Начиная обход всех пазов из первого паза и следя за направлением тока, соединяем катушечные группы (полугруппы) между собой (рис. 60, е) и няходим ко-



Рис. 60. Построение схемы однослойной обмотки однофазного двигателя с пусковым элементом: а - последовательность чередования пазов главной и вспомогательной фаз. б - направление тока в пазовых частях катушек главной фазы, в - простая шаблонная обмотка, г - шаблонная обмотка вразвалку, д - концентрическая обмотка вразвалку, е - схема главной и вспомогательной фаз концентрической обмотки вразвалку

нец фазы, обойдя все пазы рабочей обмотки. Соединение полугрупп производится по правилу: конец полугруппы соединяется с концом соседней полугруппы той же фазы, начало - с началом, т. е. так же, как и в трехфазной однослойной обмотке вразвалку, где катушечная группа разделена на две полугруппы.

Рис. 61. Однослойные обмотки вразвалку однофазных двигателей при 2р=2, z=12: а - шаблонная, б - концентрическая



Рис. 62. Однослойная (шаблонная вразвалку) обмотка однофазного двигателя при 2р=4, z=36

Схему вспомогательной фазы выполняют по тем же правилам, только она имеет обычно меньшее число катушек в группе (полугруппе). Шаг ее может быть таким же, как у главной фазы или иным.

Типичные схемы однослойных обмоток двигателей с пусковыми элементами приведены на рис. 61,62.

Схему двухслойной обмотки двигателя с пусковым элементом можно составить в такой последовательности. Сначала определяют шаг

обмотки, число пазов на полюс для главной и вспомогательной фаз q A и q B . В соответствии с шагом обмотки и числом катушек в группе, равным q A , вычерчивается первая катушечная группа главной фазы (рис. 63,64), рядом с ней катушечная группа вспомогательной фазы, затем опять катушечная группа главной фазы и т. д. Шаги по пазам для обеих фаз берутся одинаковыми. Проставляется направление тока в верхних сторонах катушек главной фазы (под соседними полюсами меняется на противоположное, как и в одно-

Рис. 63. Двухслойная обмотка однофазного двигателя при 2р=2, z=18, q A = 6, q B = 3, y A =y B =6(1-7)



Рис. 64. Двухслойная обмотка однофазного двигателя при 2р=4, z=24, q A =4, q B =2, у А =у B =4(1-5)

слойной обмотке). Последовательное соединение катушечных групп в фазе также выполняется по правилу: конец с концом, начало с началом, при этом не будет нарушена полярность полюсов. Соединения во вспомогательной фазе производятся аналогичным образом.

Примерный порядок составления схемы однофазной однослойной обмотки двигателя с повышенным сопротивлением вспомогательной фазы. Схема главной фазы у двигателя с повышенным сопротивле-

Рис. 65. Выполнение катушки с бифилярной обмоткой: а - катушка, разделенная на две секции, б - катушка с бифилярной обмоткой, в - обозначение катушки с бифилярной обмоткой на схеме; 1 - основная секция, 2 - бифилярная секция, H и K - начало и конец катушки

нием вспомогательной фазы такая же, как и у двигателей с пусковыми элементами.

При составлении схемы вспомогательной фазы надо учитывать, что в каждой катушке часть ее витков намотана встречно. Это уменьшает число эффективных проводников в пазу. Встречно намотанные витки нейтрализуют действие такого же количества витков, намотанных в основном направлении, образуя бифилярную обмотку, поэтому для нахождения числа эффективных витков в катушке (эффективных проводников в пазу) надо из общего числа вычесть удвоенное число встречно намотанных витков. Если, например, в пазу лежит катушка, в которой всего 81 виток, из них встречно намотаны 22, то число эффективных проводников в пазу будет: 81-2x22=37.

Для определения числа встречно намотанных витков при известных общем числе проводников в пазу и числе эффективных проводников в пазу надо произвести обратное действие, т. е. из общего числа вычесть число эффективных проводников и полученный результат разделить на два. При общем числе проводников 81 и числе эффективных - 37 число встречно намотанных витков должно быть:

Катушку с бифилярной обмоткой можно получить, если уложить в одни и те же пазы две секции катушки, одна из которых поворачивается на 180° вокруг параллельной пазам оси. Правая и левая стороны повернутой секции при этом меняются местами (рис. 65). В пазах, где расположена катушка с бифилярной обмоткой, ток

Рис. 66. Однослойная концентрическая вразвалку обмотка при 2р=4, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной обмотки: а - катушка с бифилярной обмоткой изображена в виде двух секций, б - то же, в виде целой катушки



Рис. 67. Однослойная концентрическая вразвалку обмотка при 2р=2, z=18 однофазного двигателя с повышенным сопротивлением вспомогательной фазы: а - при намотке против часовой стрелки, б - при намотке по часовой стрелке

Рис. 68. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы

Рис. 69. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы и соединением главной фазы в две параллельные ветви

проходит по одной секции в едином направлении, по другой - в противоположном. Полярность полюсов определяется направлением тока в катушке с большим числом витков, поэтому секцию с большим числом витков условно называют основной, а с меньшим - бифилярной.

На рис. 66,а представлена схема с бифилярной обмоткой во вспомогательной фазе, бифилярная секция условно показана внутри основной. Обычно катушки с бифилярной обмоткой на схемах изоб-

Рис. 70. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=18

ражаются в виде целой катушки с петлей, в которой изменяется направление тока (рис. 65, в и рис. 66, б).

Катушки и катушечные группы с бифилярной обмоткой должны быть соединены таким образом, чтобы полярность под соседними полюсами вспомогательной фазы чередовалась; полярность же полюсов определяется направлением тока в основных секциях.

Типичные схемы обмоток двигателей с повышенным сопротивлением вспомогательной фазы приведены на рис. 67-69.

Всякая обмотка может быть намотана либо по часовой стрелке, либо против нее, если смотреть на статор со стороны схемы. Это определяется навыками обмотчика и принятой технологией изготовления. Пример схемы при двух различных направлениях намотки приведен на рис. 67.

Примерный порядок составления схемы обмотки конденсаторного двигателя. Схемы однофазных конденсаторных двигателей строятся так же, как и схемы однофазных с пусковыми элементами, только при этом надо учитывать, что числа пазов на полюс главной и вспомогательной фаз одинаковы и поэтому схемы обеих фаз также получаются одинаковыми.

Типичные схемы однофазных конденсаторных двигателей приведены на рис. 70-76.

Рис. 71. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24

Рис. 72. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24 и соединения каждой из фаз в две параллельные ветви

Рис. 73. Однослойная концентрическая обмотка с «расчесанными» катушками однофазного конденсаторного двигателя при 2р=4, z=24



Рис. 74. Двухслойная обмотка однофазного конденсаторного двигателя при 2р=4, z=24, q А =q B =3, y A =y B =5(1-6)

В ряде случаев для конденсаторных двигателей характерна наличие в обеих фазах «расчесанных» катушек с половинным числом витков. На схеме рис. 73 показаны четыре такие катушки.

Обмотка, представленная на рис. 75, 76, из-за дробного числа пазов на полюс имеет признаки шаблонной вразвалку и двухслойной обмоток и поэтому названа комбинированной.

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно. Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.


Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее , а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное. Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая . Подключается все очень просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом , 25 ом , 15 ом . После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом . Это и будет, один из сетевых проводов. Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом , 10 ом , 20 ом . Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь. В этих движках, рабочая и пусковая – однообразные обмотки (по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор. Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.