Как проверить микросхему стабилизатор. Как проверить диод мультиметром




Информация для начинающих радиолюбителей:
функции проверки стабилитронов в мультиметрах нет.

И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.

Собрать решил устройство как приставку к мультиметру, причём компактную. Корпус от упаковки безопасных лезвий «Schick ». Розетка для оконечника телефонного кабеля подошла и по размеру и по цвету, а к ней удалось приладить кнопку включения питания. Учитывая некоторое своеобразие корпуса, сборку пришлось выполнять, так сказать, «пошаговым» способом.


Шаг первый


Шаг второй - уборка в нишу корпуса всего выше перечисленного и установка по месту штырей (образующих импровизированную вилку для соединения пробника с мультиметром) путём использования на них резьбового соединения и двух гаек М4 на каждый. Расстояние между центров штырей 18,5 мм.


Шаг третий - установка светодиодов и ограничительных резисторов.


Спрятал содержимое «от глаз подальше» и сверху прикрутил подходящие контакты для подсоединения проверяемых стабилитронов. Контакты можно поворачивать вокруг своей оси и тем самым менять расстояние между ними в зависимости от длины проверяемого компонента. Пробую в деле:

Импортный стабилитрон BZX85C18 - чуток не дотянул до заявленного параметра.

Зато отечественный КС515А не подкачал, как говориться «в яблочко». И вот теперь имею в арсенале Schick арный тестер стабилитронов.))

Видео

Сам мультиметр конечно можно заменить любым, даже стрелочным, вольтметром - это будет полезно, если по ходу работы в мастерской вам часто приходится проверять такие детали. Желаю успехов, Babay. Россия, Барнаул.

Идентификация стабилитронов оказывается затруднительной, поскольку для этого необходим источник напряжения, превышающий напряжение стабилизации. Большинство стабилитронов, применяемых радиолюбителями, имеют напряжение стабилизации 3...15 В, поэтому подойдет источник с напряжением 15...20В. Сделать такой источник компактным и легким можно, применив один гальванический элемент с повышающим преобразователем напряжения.

Предлагаемое устройство поможет выявить из диодной группы такие элементы, как стабилитроны и определить их основной параметр - напряжение стабилизации. Его схема показана на рис. 1, и конструктивно оно выполнено в виде приставки к цифровому мультиметру. В устройстве применен модуль преобразователя напряжения от калькулятора "Электроника МК-24". Он представляет собой законченную конструкцию в корпусе размерами ЗОх13*8 мм и залит эпоксидной смолой. У него три вывода, имеющих обозначения "+", "-" и "VBbo", на корпусе имеется маркировка КФ-29. При подключении к выводам питания гальванического элемента типоразмера АА (1,5 В) на выводе "V^" присутствует постоянное напряжение около 15 В. Работоспособность модуля сохраняется при уменьшении питающего напряжения до 0,8 В. Резистор R1 совместно с испытуемым стабилитроном, который подключают к контактным площадкам Х1 и Х2, образуют параметрический стабилизатор напряжения.
Цифровой мультиметр М-830. М-838 или аналогичный устанавливают в режим измерения постоянного напряжения на пределе 20 В и подключают с соблюдением полярности к гнездам XS1 и XS2. При отсутствии подключаемого элемента мультиметр должен показать выходное напряжение преобразователя. Выводы тестируемого элемента соединяют с контактными площадками Х1 и Х2, если это стабилитрон и он соединен анодом с минусом, а катодом с плюсом, то мультиметр покажет напряжение стабилизации данного стабилитрона. При обратном подключении его выводов показания будут не более 0,7 В.

Если показания при подключении элемента в одной полярности не изменяются, а в другой не превышают 0,7 В - это диод или стабилитрон с более высоким, чем 20 В, напряжением стабилизации. Для симметричного стабилитрона в обоих случаях показания будут одинаковыми и меньше выходного напряжения преобразователя. Если показания муль-тиметра близки к нулю в обоих направлениях подключения, испытуемый элемент (диод или стабилитрон) пробит. При максимальных показаниях в обоих вариантах подключения тестируемого элемента - обрыв.
Устройство собирают на печатной плате из двусторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Одна сторона является лицевой панелью на которой сделаны контактные площадки Х1 и Х2. На второй стороне монтируют детали методом поверхностного монтажа без сверления отверстий. Их выводы укорачивают и припаивают непосредственно к печатным проводникам. Через отверстия в плате контакты Х1 и Х2 соединяют с контактными площадками второй стороны.
Контактные пластины для установки гальванического элемента изготовляют также из двусторонне фольгированного стеклотекстолита, зачищают, залуживают и припаивают к печатным проводникам платы. К минусовой пластине, для улучшения контакта с элементом питания, припаивают пружинящий лепесток. Преобразователь напряжения КФ-29 приклеивают к плате, а его выводы припаивают к соответствующим контактным площадкам. Гнезда XS1 и XS2 подбирают по диаметру щупов мультиметра и закрепляют на плате гайками. Гнезда можно использовать любые из имеющихся в наличии, изменив способ их крепления Выключатель питания SA1 - любой малогабаритный движковый.




При отсутствии модуля КФ-29 преобразователь можно собрать по схеме, приведенной на рис. 3. На транзисторе VT1 и трансформаторе Т1 собран бло-кинг-генератор. Импульсы напряжения с коллектора транзистора VT1 выпрямляются диодом VD1, сглаживаются конденсатором СЗ. Постоянное напряжение через резистор R1 поступает на гнезда XS1 и XS2. Элементы этого преобразователя монтируют на аналогичной плате, причем лицевая панель не меняется а печатные проводники и монтаж на второй стороне выполняют в соответствии с рис. 4.
В устройстве применены резисторы МЛТ, С2-33, оксидные конденсаторы С1 и СЗ - импортные, С2 - К10-17. Для изготовления трансформатора Т1 используют ферритовое кольцо типоразмера К10*6хЗ мм магнитной проницаемостью 1000. 2000, грани которого предварительно притупляют с помощью надфиля и обматывают тонкой виниловой лентой. Первичная обмотка содержит 20 витков, а вторичная - 10 витков провода ПЭВ-2 0,31 Диод 1N5817 заменим на 1N5818, 1N5819. Транзистор - КТ3102 с любым буквенным индексом Выключатель SA1 - любой малогабаритный движковый.
После монтажа устанавливают гальванический элемент и включают SA1. Если собранный преобразователь не начинал работать, необходимо поменять местами выводы одной из обмоток трансформатора Т1. Внешний вид приставки показан на рис. 5. Ее можно использовать и со стрелочным мультиметром.

Данная статья посвящена проверке радиодеталей (транзисторов, диодов, конденсаторов и т.д.) и опубликована в связи со многими обращениями ко мне по этому поводу.
Как проверить радиодетали
Для проверки исправности радиодеталей потребуется измерительный прибор – мультиметр. Приобретать лучше не дешевый китайский ширпотреб, который не только быстро выходит из строя, но и существенно ограничен в возможностях за счет слабого тока. В идеале мультиметр должен питаться от батарейки типа «крона».
Резистор
Невооруженным взглядом можно определить сгоревший резистор – он почернеет. Даже если на нем остается нужное сопротивление, его следует заменить.

Для проверки мультиметр ставится в режим омметра. Затем подсоединяем щупы (полярность не имеет значения) к выводам резистора и сравниваем замеренное сопротивление с номинальным. Номинал указывается либо на плате, либо на самом резисторе. Некоторые резисторы маркируются не цифрами, а разноцветными полосками, расшифровываемыми по нехитрой схеме. Отклонения в пределах 5% от номинала считаются нормой.

Конденсатор
Так же, как и резистор, может визуально сигнализировать о неисправности. Конденсатор может вздуться или вообще взорваться и вытечь. Заметить это легко. В таком случае измерения не требуются – деталь подлежит безоговорочной замене.
Еще один нехитрый тест конденсатора – проверка целостности контактов. Для этого «ножки» конденсатора нужно слегка согнуть, после чего попытаться повернуть их или вытащить. Если наблюдается хотя бы минимальный люфт – конденсатор неисправен.
В других случаях конденсатор проверяют омметром. Значение сопротивления должно равняться бесконечности. Если нет – замена.
Диод
Диод проводит ток в одном направлении и не проводит в обратном. Стрелочным мультиметром это легко проверить в режиме омметра. Положительный щуп – к аноду, отрицательный – к катоду. В таком положении ток должен проходить. Если поменять щупы местами, то результат замера будет равноценен обрыву цепи.
Цифровой мультиметр ставится в специальный режим проверки диодов. Фиксируемое напряжение на германиевом диоде должно быть в районе 200-300мВ, на кремниевом – 550 – 700. Если напряжение зашкаливает за 2000мВ – диод неисправен.
Транзистор
Биполярный
Проще всего представить транзистор в виде двух «встречных» диодов. Проверка должна быть соответствующей: база-эмиттер и база-коллектор. Ток должен идти в одном направлении, а в другом – нет.
Переход эмиттер-коллектор не должен прозваниваться вообще! Если ток проходит при отсутствии напряжения на базе, транзистор необходимо выбросить.
Полевой
Перед проверкой необходимо замкнуть между собой все контакты, чтобы разрядилась емкость затвора. После этого омметр должен фиксировать сопротивление, равное бесконечности на всех выводах. В противном случае деталь подлежит замене.
Стабилитрон
Проверка стабилитрона – процесс более деликатный. Цифровым мультиметром здесь пользоваться не рекомендуется – он запросто может «пробить» исправную деталь в обоих направлениях. Если есть аналоговый тестер, то проверить можно так же, как диод. Если нет – есть различные способы проверки. Опишем простейший.

Понадобится блок питания с регулировкой подаваемого напряжения. Подключаем к аноду резистор сопротивлением 300-500 Ом, затем подключаем блок питания. Замеряем напряжение на стабилитроне, поднимая его значение на блоке питания. Достигнув определенного значения (лучше, если оно известно заранее – напряжение стабилизации), напряжение должно перестать расти. Если продолжает – меняем стабилитрон.

Тиристор

Положительный щуп омметра – к аноду, отрицательный – к катоду. Сопротивление должно равняться бесконечности. Если коснуться управляющим электродом анода, то должно зафиксироваться сопротивление порядка 100 Ом. При отсоединении УЭ это значение должно остаться фиксированным. Если результат на любом из этих этапов отличается от описанного, тиристор необходимо заменить.

Катушка индуктивности
Простейшую поломку – обрыв – легко определить омметром. Сопротивление должно быть. Как правило – несколько сотен Ом. Если значение уходит в бесконечность – значит, произошел обрыв.
Сложнее обстоит дело с замыканием витков. Как правило, определить его почти невозможно – все способы небезупречны. Поэтому лучше оставить катушку напоследок, когда все остальные детали точно исправны, и попросту заменить ее, согласно методу исключения.

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный - к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300...500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200...500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.


Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+ ), а к катоду – отрицательное, т.е. (- ). В таком случае диод открывается и через его p-n переход начинает течь ток .

При обратном включении, когда к аноду приложено отрицательное напряжение (- ), а к катоду положительное (+ ), то диод закрыт и не пропускает ток .

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов . Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение ! Его ещё называют падением напряжения на p-n переходе . Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть "дверь" для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой (- ) вывод тестера, а к катоду плюсовой (+ ), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо V f ), что дословно переводится как "падение напряжения в прямом включении ".

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно .

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки . В этом мы скоро убедимся.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов . Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный ) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный ) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.


Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (I обр ). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.


На дисплее покажется "1 " в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: "Можно ли проверить диод не выпаивая его из платы?" Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв .

    Пробой . При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

    Обрыв . При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – "1 ". При таком дефекте диод представляет собой изолятор. "Диагноз" - обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие "жиденькие" и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе - Forward Voltage Drop (V f )) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин V f , которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

диодного моста .

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

    Диоды Шоттки имеют V f в районе 100 – 250 mV;

    У германиевых диодов V f , как правило, равно 300 – 400 mV;

    Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине V f .

Возможно, после прочтения данной методики у вас появится вопрос: "А как же проверить диодный мост?" На самом деле, очень просто. Об этом я уже рассказывал .