Простое реле времени с задержкой включения. Куда следует купить таймер включения и выключения электроприборов по времени




В связи с постоянным увеличением стоимости электроэнергии, актуальным становятся легальные способы ее экономии. Электрическое освещение в некоторых помещениях требуется редко. А вот выключить свет часто забываем, а лампочка продолжает гореть расходуя драгоценные киловатты.

Схема представляет собой простую конструкцию, включающее свет на 1 - 1,5 минуты , а затем его автоматически отключающее. Устройство подключается параллельно стандартному выключателю света (SА) и в дежурном режиме электроэнергии практически не использует.


Схемотехника конструкции очень проста. В момент первого включения тумблером SВ1 емкость С1 разряжена, а потому зарядный ток следует на базу составного эмиттерного повторителя. Оба открываются. В эмиттерной цепи VT2 загорается светодиод, который расположен внутри оптотиристора, который включает лампу.

По истечении времени, которое регулируется номиналом конденсатора С1 и резистора R2 , транзисторы запираются. Освещение отключается. Повторное включение света происходит при нажатии на тумблер SВ. Конденсатор разряжается, вновь отпираются транзисторы и оптопара. Свет снова включается.

Принцип работы такой же как и на рисунке выше, т.е. Если задать значения емкости и сопротивления, то можно получить нужное нам время.


Схемотехника работы устройства очень проста при нажатии на кнопку начинает заряжаться конденсатор, а также открывается второй транзистор подающий питание на электромагнитное реле, которое своими фронтовыми контактами подключает освещение или любую другую нагрузку. Как только конденсатор зарядится, первый транзистор закроется и отключит электромагнитный прибор, который своими контактами разомкнет цепь освещения.

Реле времени на микросхеме

Биполярные транзисторы V1 и V2 с цифровыми элементами D1.1 и D1.2, емкостями C1 и С2, сопротивлениями R3, R4 и R5 образуют генератор; частота его задается переменным сопротивлением R4. Выход генератора подсоединен к делителю частоты, выполненному на ИМС D2 - D6. С его выхода сигналы следуют на один из входов RS-триггера, на элементах D1.3 и D1.4. Другой вход триггера подключен к цепи запуска.


Запускающее переменное напряжение 220 вольт идет через гасящие сопротивления R1 и R2, диоды V3 и V4 и емкость C3 на реле К1. В исходном состоянии, контакт К1.1 замыкает генератор, и он не работает. Индикатор Н1 не светится. Реле К2 отключено, хотя на базу V7 поступает высокий уровень.

В момент поступления входного сигнала, реле К1 включается. RS-триггер переключается - на выводе 11 D1.3 появляется высокий уровень, а на выводе 8 D1.4 - низкий. Индикатор H1 горит, однако реле К2 отключено, т.к на базе V7 появился низкий уровен. Генератор вырабатывает импульсы, следующие на делитель частоты. С появлением низкого уровня RS-триггер переходит в начальное состояние - на выводе 11 возникает низкий уровень, а на выводе 8 - высокий. Генератор отключается, сигнальная лампочка Н1 тухнет, а реле К2 срабатывает.

Задержка задается частотой генератора с помощью R4, а также масштабного выключателя S1. Ясно, что чем она выше, тем короче время выдержки, и чем больше, тем длиннее. Частоту генератора можно перестраивать достаточно плавно и в широком диапазоне, а коэффициент деления - скачком в 4 раза. Шкала реле 6 мин, а при замыкании переключателя S1 1,5 мин.

Для управления электрическими устройствами широко используются разнообразные контрольные механизмы. Предлагаем рассмотреть, как работает простое циклическое реле времени 220в, как собрать устройство своими руками, инструкция по эксплуатации, его обозначение и расшифровка, а также где можно купить прибор.

Реле – это электрическое электромагнитное устройство, которое по сути своей работы является коммутатором, по периодике бывает суточное, часовое или недельное. Данный вид устройств применяется там, где необходимо контролировать цепи, обладающие сигналом малой мощности (с полной электрической изоляцией между контрольными и управляемыми проводниками), где несколько схем должны контролироваться при помощи одного сигнала. Первые реле использовались в междугородных телеграфных цепях в качестве усилителей: они повторяли сигнал, поступающий от одного контура, и передавали его на другие цепи. Также его использовали как дополнение к работе компьютеров для выполнения простых логических команд.

Фото - Магнитное поле

Иногда электромеханическое реле представляет собой своего рода «амортизатор», прикрепленный к якорю, который предотвращает немедленное полное движение, если катушка резко попадает в среду напряжения или напротив, обесточивается. Это дополнение дает реле свойство задержки времени срабатывания. Механическое реле задержки времени может быть использовано, чтобы задержать подключение якоря на подачи напряжения на катушку, обесточивания или этих действий вместе.

Видео: как сделать реле времени на одном транзисторе

Принцип работы

Электрический ток при помощи проводников создает магнитное поле под прямым углом к ​​направлению потока электронов. Если проводник свернут в форме катушки, магнитное поле, создаваемое реле, будет ориентировано вдоль длины катушки. Чем больше ток, тем больше сила магнитного поля, как это показывает электрическая схема работы:


Фото - Схема

Индукторы реагируют на изменения в текущем состоянии реле из-за энергии, запасенной в производном магнитном поле. Когда мы строим трансформатор с двумя катушками индуктивности вокруг общего железного сердечника, магнитное поле используется для передачи энергии от одной катушки к другой. Тем не менее, есть более простые и более прямые способа применения электромагнитных полей, чем в разнообразных устройствах. Магнитное поле, создаваемое катушкой тока, может использоваться для приложения механической силы на любое магнитное тело.


Фото - Схема катушки

Если поместить магнитный датчик около такой катушки с целью движения предмета, то когда активизируется катушка с электрическим током, у нас получится электромагнит. Подвижная магнитная стрелка называется арматурой, большинство стрелок перемещаются при помощи постоянного (DC) или переменного (AC) тока, подающегося на катушку напряжения. Полярность магнитного поля не имеет значения для привлечения железного ядра. Соленоиды могут быть использованы для электрически открытых дверных защелок, контроля работы клапанов, движения роботов и их конечностей, приводов механизмов электрических выключателей. Но, если соленоид используется для приведения в действие набора переключающих контактов, его называют реле срабатывания .

Реле чрезвычайно полезны, если есть необходимость контроля большого количества тока и/или напряжения с небольшим электрическим сигналом. Катушка реле, которая создает магнитное поле, может пропустить через себя доли ватт энергии, в то время как контакты (закрытые или открытые к току магнитного поля) могут провести сотни ватт энергии нагрузки. По сути, реле действует как бинарный усилитель включения и выключения.

В приведенной схеме, в катушки реле подается питание от источника низкого напряжения (12 В постоянного тока), в то время как однополюсный контакт на одно направление (SPST) получает ток цепи высокого напряжения (480 В ~). Вполне вероятно, что ток, необходимый для питания обмотки реле будет в сотни раз меньше, чем текущий уровень. Типичные токи катушки реле значительно ниже 1 А, в то время как контактные данные промышленных реле имеют характеристики около 10 ампер.

Одна катушка реле может быть использована для приведения в действие более чем одного набора контактов. Эти контакты могут быть замыкающими, размыкающими или любой комбинацией из двух и более. Контакты реле могут быть представлены колодками из металлического сплава, ртути или даже магнитного тростника, так же, как и другие типы выключателей.

Конструкция

Простое двухканальное электромагнитное реле состоит из проволочной катушки, обернутой вокруг железного мягкого сердечника, с якорем из железа, который обеспечивает низкое сопротивление для магнитного потока, подвижной железной стрелкой и одного или более наборов контактов. Якорь шарнирно соединен с ярмом и механически связан с одним или несколькими наборами подвижных контактов. Он удерживается на месте с помощью пружины так, что когда реле обесточено, в магнитной цепи есть воздушный зазор. В этом состоянии один из двух наборов контактов в реле закрыт, а другой открыт. Другое реле (скажем, астрономическое) может иметь большее или меньшее количество наборов контактов, в зависимости от их функции.

Когда электрический ток проходит через катушку, он генерирует магнитное поле, которое активирует арматуру и последующее перемещение подвижного контакта, что делает разрывы или наоборот, соединяет с неподвижным контактом. Если множество контактов закрыто, то когда реле обесточено, движение размыкает контакты и разрывает соединение, если контакты открыты – то действие прямо пропорционально. Когда ток в катушке выключен, якорь возвращается под действием силы, которая примерно вдвое слабее магнитной силы, в свое нормально-расслабленное положение. Обычно эта сила обеспечивается пружиной, гравитация используется обычно в промышленных пускателях.

При подаче питания на катушку с постоянным током, диод помещается через катушку, чтобы рассеять энергию из разрушающегося магнитного поля при дезактивации, которое в противном случае сгенерирует всплеск напряжения, опасного для полупроводниковых компонентов схемы. Автомобильное бытовое реле времени 12 вольт (schneider electric, legrand) включает диод внутри своего корпуса. Кроме того, сеть защиты контактов, состоящая из конденсатора и резистора, может поглотить магнитополя. Если катушка работает под напряжением с переменным током (AC), то контакты реле обжимаются, создавая небольшое напряжение из-фазного тока, которое увеличивает минимальную тягу на якоря во время цикличного перемещения переменного тока.

Фото - Cхема подключения реле времени

Типы реле и их характеристики

  1. Токовое реле блокировки с постоянным магнитом бистабильным или импульсным (РСВ, РСА, РВ, РВМ, РВП, РЭВ, РВЦ). Когда ток выключается, реле остается в своем последнем состоянии. Это достигается при помощи соленоида, управляющего трещоткой и кулачковым механизмом.
  2. Многоканальное (многофункциональное) реле является специализированным видом многоходового реле блокировки, ранее использовался для автоматических телефонных станций.
  3. Пневматическое модульное реле (таймер) времени является одним из видов устройств для промышленного контроля станков, транспортеров и прочего последовательного контроля. Они характеризуются большим числом контактов, которые легко преобразовываются из нормально-разомкнутого состояния на нормально-закрытое, их главные технические свойства: легко заменяемые катушки, что позволяет компактно устанавливать большое количество данных приборов в панели управления.
  4. В радиопередатчиках и приемниках, которые имеют общую антенну, часто используется коаксиальное реле как устройство, которое переключает антенну от приемника к передатчику. Это защищает ресивер от высокой мощности сигнала передатчика.
  5. Контакторное программируемое реле времени с задержкой включения используются для коммутации электрических двигателей и осветительных нагрузок. Силовые контакты изготовлены из сплавов, содержащих серебро. Их недостатком является высокая шумность во время работы. У контакторов очень широкое применение, они используются для управления электродвигателями, освещением, отоплением, конденсаторными батареями, тепловыми испарителями и для работы вентилятора, аквариума, холодильника или инкубатора.
  6. Твердотельные электронное реле выдержки и времени (УХЛ, серии УТ24, УХЛ4) это аналог электромеханического, но не имеет движущихся частей, что увеличивает надежность действия и долговечность. Их производят многие современные компании: Шнайдер, Siemens, Theben, ATS, CRM, IHP, PCR, IEK (ИЭК), PCZ, хорошие отзывы реле времени ABB, программное ОВЕН, Finder, Веха, ВЛ. Он выполнены на микросхеме кр512пс10.


Фото - Схема кр512 ПС

Как сделать реле

На самом деле, чтобы сделать реле не нужно особых электротехнических знаний, вполне достаточно иметь хотя бы базовые. Изучим руководство, как сделать своими руками реле задержки времени.

Инструкции:



Если установлен таймер, то Вы можете настроить, за сколько секунд или часов прибор сможет подключить питание или перекрыть его.

Схема реле времени

Чтобы сделать самодельное реле для небольшого двигателя, нам понадобятся его принципиальная схема, рассмотрим возможные варианты конструкции.

Самое популярное и эффективное – это электронное реле типа ТЭМ или импортного AT3.


Фото - Схема реле времени вл 64

Проще всего сделать самому цифровое реле на транзисторе, оно может состоять буквально из одного транзистора и микроконтроллере. Это устройство может контролировать работу дворника заднего стекла у машины, также его можно настроить на контроль включения-выключения уличного света, стиральной машины.


Фото - Схема реле на транзисторах

Фото - Реле на транзисторе

Чтобы подключить бытовое реле для дома, Вы можете воспользоваться фото включения автомата. В принципе, установка не требует вмешательства специалиста, все можно сделать самому.

Продажа реле времени осуществляется в специальных центрах, где Вы найдете каталог продукции компании, цену, нужные модели (которые монтируются на дин-рейку, в розетку, на счетчик или в автомобиль на стартер). Также можете посетить магазин электрических товаров. В Украине новое реле обойдется где-то в 30 долларов, в России стоимость будет немного ниже за счет высокого уровня конкуренции – средний прайс 25-27 долларов. Если хотите сэкономить – посетите производственные базы, они есть во всех крупных городах – Москве, Киеве, Санкт-Петербурге (СПб), Харькове.

Производитель продукции также должен предоставить паспорт, условия эксплуатации и характеристики, по которым производится ремонт.

Схемы устройств с заданной временной выдержкой .

На рис. 1 ,а изображена принципиальная схема реле времени с задержкой на отключение нагрузки в виде осветительных ламп накаливания. Подобные реле могут быть установлены в коридорах, лестничных площадках, прихожих с целью экономии электрической энергии и увеличения срока службы ламп.

При нажатии на кнопку S1 конденсатор С1 разряжается через резистор R5 и диод V5. В каждый положительный полупериод сетевого напряжения конденсатор заряжается через эмиттерный переход транзистора V3, в результате тринистор VI открывается и включает лампу HI. В отрицательный полупериод напряжения ток через устройство не протекает. После отпускания кнопки в каждый положительный полупериод напряжения ток через диоды V2, V4, резистор R4 и эмиттерный переход транзистора V3 подзаряжает конденсатор С1 и накал лампы плавно убывает. Нужную выдержку времени на выключение лампы устанавливают подстроечным резистором R3. Максимальная временная выдержка реле на отключении лампы около 10 мин. В конце выдержки накал лампы начинает убывать. В ждущем режиме устройство не потребляет тока от сети. В реле времени можно использовать любые диоды из серии КД105 или диоды Д226Б. Транзистор необходим с максимально допустимым напряжением коллектор - эмиттер 300 В. Конденсатор С1 желательно выбрать в герметичном исполнении, например ЭГЦ. Тринистор VI должен быть рассчитан на обратное напряжение не менее 300 В.

На рис. 1, б показан второй вариант схемы реле времени с выдержкой на отключение нагрузки . Максимальная выдержка времени около 20 мин, а ток, потребляемый в ждущем режиме, 2 мА. При нажатии на кнопку S1 отрицательные полупериоды сети заряжают конденсатор С1 до напряжения стабилизации стабилитрона V5. Когда закрывается транзистор V4, a V3 и тринистор VI открываются - включается лампа HI. После отпускания кнопки конденсатор разряжается через подстроечный резистор R5, которым устанавливают нужную выдержку времени. Для устройства пригодны любые диоды на обратное напряжение не менее 400 В; транзистор на максимально допустимое напряжение коллектор - эмиттер 300 В. Вместо КП302А можно использовать транзисторы КП302Б, КП305Д, КП305Е.

На рис. 1,в представлена схема еще одного варианта реле времени для

автоматического выключения осветительных ламп
. Максимальная временная выдержка реле около 20 мин, потребляемый ток в ждущем режиме 2 мА. При нажатии на кнопку S1 через резистор R1 и диод V7 протекает ток, заряжающий конденсатор С2 до напряжения стабилизации стабилитрона V5. На выходе элемента D1.1 устанавливается напряжение низкого уровня, на выходе D1.2-высокого (сигнал логической 1). Транзистор V4 и тринистор V2 открываются, и включается лампа HI. После отпускания кнопки конденсатор С2 разряжается через подстроечный резистор R6, служащий для установки нужной выдержки. После разрядки конденсатора С2 до напряжения примерно 4 В транзистор V4 и тринистор V2 закрываются и лампа гаснет. Требования к диодам и транзистору устройства такие же, как и в предыдущих реле. Вместо микросхемы K176ЛA7 можно использовать КI76ЛE5. Тринистор должен быть рассчитан на обратное напряжение не менее 300 В. Если суммарная мощность подключаемых к реле времени ламп превышает 600 Вт, тринистор необходимо установить на теплоотвод. При правильном монтаже и исправных элементах описанные реле времени начинают работать сразу, без налаживания. Поскольку к включенной лампе приложено напряжение около 155 В, обычные лампы на 220 В в реле времени будут гореть неполным накалом.

Реле времени мощностью не более 100 Вт с выдержкой на выключение осветительной лампы около 10 мин можно собрать по принципиальной схеме, показанной на рис. 2. Запуск устройства производят кратковременным включением выключателя S2 (при включенном S1). Нужную выдержку устанавливают переменным резистором R4. Реле времени можно собрать на любых кремниевых маломощных транзисторах соответствующей структуры со статическим коэффициентом передачи тока не менее 50, например КТ312Б. Диоды VI - V4 должны выдерживать прямой ток не менее 300 мА и обратное напряжение 400 В (например, Д226Б); диод V5-любой кремниевый маломощный. Тринистор следует выбирать с допустимым прямым напряжением не менее 300 В. Если у тринистора оказался слишком большой ток управления, необходимо параллельно резистору R2 подключить резистор такого же сопротивления.

Реле времени, принципиальная схема которого изображена на рис. 3, позволяет плавно до номинального значения увеличивать ток через лампу в течение I с после ее включения. Это позволяет значительно увеличить срок службы лампы. Мощность лампы не более 100 Вт, при большей мощности диоды КД105Б следует заменить на КД202Ж, КД202С. Транзисторы КТ315Б можно заменить любыми кремниевыми маломощными соответствующей структуры со статическим коэффициентом передачи тока не менее 50. Диод V8 - кремниевый маломощный.

Принципиальная схема реле времени для коммутации осветительных я нагревательных приборов мощностью не более 100 Вт с регулируемой выдержкой от 5 с до 30 мин показана на рис. 4. Транзистор V6 должен быть рассчитан на максимально допустимое напряжение коллектор - эмиттер 300 В. Можно попробовать заменить его транзистором КТ605Б. Транзистор КП302А можно заменить на КП302Б или КП302В, но при этом выдержка времени будет меньше из-за большего напряжения отсечки у этих транзисторов. Конденсатор С1 следует выбрать с малым током утечки, например К52-2, К52-1, ЭТО. Для работы с временной выдержкой до долей секунды вместо подстроечного резистора R4 нужно включить многопозиционный переключатель с набором постоянных резисторов.

С помощью электронных реле можно неплохо экономить дома, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку, мы включаем свет и через определенное время он отключается. Этого времени должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. К тому же освещение без надобности не горит, по забывчивости оставленный включенным. В этой статье мы расскажем, как сделать реле времени своими руками, предоставив все необходимые схемы и инструкции.

Простейший вариант

Пример конструктора для самодельной сборки таймера задержки отключения.

При желании есть возможность самостоятельно собрать реле времени.

Время задающим элементом является конденсатор С1, в стандартной комплектации КИТ набора 1000 мкФ/ 16 В, время задержки составляет 10 минут. Регулировка времени осуществляется резистором R1. Питание платы 12 вольт. Управление нагрузкой осуществляется через контакты. Плату можно не делать, собрать на макете.

Для того, чтобы сделать реле времени, нам понадобятся такие детали:


Правильно собранное устройство не нуждается в настройке и готово к работе. Данное самодельное реле задержки времени было описано в журнале «Радиодело» 2005.07.

Самоделка на базе таймера NE 555

Другая схема электронного таймера для сборки своими руками, легка и доступна для повторения. Элементная база собрана на распространенной микросхеме интегрального таймера «NE 555». Данный прибор предназначен как для отключения, так и включения устройств, ниже представлена схема устройства:


Сердцем устройства является специализированная микросхема, используемая в построении всевозможных электронных устройств, таймеров, генераторов сигнала и т.д. Данная микросхема управляет нагрузкой через электромеханическое реле, которое можно задействовать как на включение, так и на выключение света.

Управление таймером осуществляется двумя кнопками: старт и стоп. Для начала отсчета времени необходимо нажать на кнопку старт. Отключение и возврат устройства в первоначальное состояние осуществляется кнопкой стоп. Узлом, задающем интервал времени, является цепочка из переменного резистора R1 и электролитического конденсатора C1. От их номинала зависит величина задержки включения .

При данных номиналах элементов R1 и C1, диапазон времени может быть от 2 секунд до 3 минут. В качестве индикатора состояния работоспособности конструкции используется включенный параллельно катушке реле светодиод. Как и в предыдущей схеме, данная также требует внешнего питания, от источника постоянного тока 12 вольт.

Для того чтобы сделать запуск реле при подаче на него питания, необходимо немного изменить схему, и вывод 4 микросхемы соединить с плюсовым проводом, вывод 7 отключить, а выводы 2 и 6 соединить вместе. Более наглядно о данной схеме можно узнать из видео:

Реле на одном транзисторе

Для совсем ленивых можно использовать схему реле времени на одном транзисторе, КТ 973 А, импортный аналог BD 876. Данное решение также основано на заряде конденсатора до напряжения питания, через потенциометр. Изюминка схемы заключается в принудительном переключении и разряде емкости через резистор R2 и возвращении исходного начального положения тумблером S1.


При подаче питания на устройство начинается заряжаться емкость электролита через резистор R1 и через R3, открывая тем самым ключ транзистор VT1. Когда емкость зарядится до состояния отключения VT1 обесточивается реле, тем самым отключая или включая нагрузку, в зависимости от назначения схемы и использования контактов.

Элементы таймера не критичны и могут иметь незначительный разброс в номиналах. Выдержка времени может отличаться и зависеть от температуры окружающей среды, а также от величины сетевого напряжения. На фото ниже предоставлен пример готовой самоделки:


Теперь вы знаете, как сделать реле времени своими руками. Надеемся, предоставленные инструкции пригодились вам и вы смогли собрать данную самоделку в домашних условиях!


Нравится(0 ) Не нравится(0 )

В этой статье мы рассмотрим различные варианты схем реле задержки времени с напряжением питания 220 Вольт . Принцип работы такого устройства в том, что при появлении стартового события: нажатие кнопки или включение в питающую сеть, устройство подключает нагрузку к сети.

По прошествии заданного времени происходит выключение нагрузки и больше она не включается, вплоть до наступления следующего стартового события.

Существует множество различных схемотехнических решений для таких реле времени выключения на 220 Вольт . Разберем в начале какие варианты возможны.

Во-первых, они делятся на:

  • с гальванической развязкой;
  • без гальванической развязки.

Первые более безопасные и дорогостоящие; вторые - менее безопасные, но дешевые.

Во-вторых по типу выходного элемента, коммутирующего нагрузку:

  • реле («сухой контакт» - переключающий, включающий, отключающий или группа контактов);
  • симистор;
  • тиристор.

Первый вариант - наименее чувствителен к типу подключаемой нагрузки и устойчив к токовым всплескам; симистор - менее надежен и чувствителен к индуктивной нагрузке; а тиристор не может коммутировать синусоидальное напряжение 220В, поэтому как правило управляет только полуволной. С помощью тиристора можно управлять нагрузкой, нечувствительной к форме питающего напряжения.

Также можно разделить виды схемотехнических решений на:

  • постоянное время выдержки;
  • настраиваемое время выдержки (таймер).

Простое реле времени на 220 В

Данное реле выдержки времени на 220 Вольт является гальванически не развязанным и является простейшим. В качестве элемента коммутации применяется тиристор .

Как мы говорили, тиристор позволяет коммутировать нагрузку, нечувствительную к форме напряжения питания: лампу накаливания, тен, галогеновую лампу и тому подобное.

Нельзя подключить светодиодный драйвер или энергосберегайку типа КЛЛ, любой электронный прибор, имеющий на входе трансформатор.

Минимум деталей схемы и простота схема позволят собрать это схему любому, израсходовав не более 50–100 руб.

Однако учтите, что схема не имеет гальванической развязки и требует предельной осторожности и соблюдения правил техники безопасности!

Схема работает так же просто, как и выглядит. Если замкнуть контакт S1, то начнется постепенная зарядка C1. В процессе заряда этого конденсатора, тиристор VS1 будет открыт.

На нагрузке HL1 будет сетевое напряжение. Как только конденсатор зарядится, тиристор VS1 закроется и ток через него проходить перестанет. Наш прибор завершить работу и произойдет выключение нагрузки.

Схема содержит такие детали:

  • диодный мост , выполняющий функцию подачи на тиристор выпрямленного тока: состоит из диодов с максимальным током не ниже 1А и имеющего обратный показатель напряжения не ниже 400В (1N4007);


  • тиристор серии BT151 (если у вас завалялись КУ 202Н или КУ 202М - применяйте);


  • сопротивление R1 - 4.3 МОм, мощностью 1Вт;
  • сопротивление R2 200 Ом, 1Вт;
  • R3 такой же мощности, 1.5 кОм;
  • конденсатор устройства С1 на 0.47 мкФ, на 630В или большее напряжение;
  • мощностью не более 200 Вт; при применении ламп накаливания, и в том числе галогенных ламп помните, что стартовый ток при включении может превышать рабочий в 10 раз, хотя это продолжается не так долго.
  • выключатель или тумблер S1.

Так как весь принцип работы этого реле сводится к зарядке конденсатора, то изменяя емкость конденсатора проще всего изменить время включения реле .

Из-за простоты данного устройства дать простую формулу расчета времени выдержки невозможно, так как время зависит от параметров конкретного тиристора, сопротивлений резисторов, ёмкости конденсатора.

Реле времени выдержки с регулировкой времени 220 В

Чтобы сделать более надежное , качественное и безопасное устройство потребуется больше усилий и средств.

Приведенная ниже схема собрана на микросхеме таймере 555, впервые выпущенной в 1972 году, но тем не менее не сбавляющей свою популярность. Применение микросхемы позволяет с большой степенью точности отсчитать необходимый интервал времени выдержки таймера от 3 сек до 10 минут.

Для питания устройства применяется трансформатор - управляющая часть схемы имеет гальваническую развязку .

Коммутация нагрузки производится с помощью силового симистора. Его включение осуществляется симисторной оптопарой, имеющей схему обнаружения нуля .

В результате - коммутация нагрузки происходит близко к моменту перехода синусоидального напряжения питания через ноль. Такое включение максимально безболезненно для нагрузки и не производит помех в момент включения .


Переходим к принципу работы схемы

После подачи питания цепочка R1–C3 генерирует стартовый импульс, длительностью примерно 100мс для микросхемы DD1, с которого выход OUT микросхемы устанавливается в лог.1, включая тем самым оптосимистор VS1, симистор VS2 и подключая нагрузку к сети 220В. С этого же момента начинается отсчет времени.

Время выдержки таймера задается цепочкой R3–R6–C2. Время зарядки конденсатора C2 до напряжения отключения выход OUT микросхемы DD1 в логический 0 определяется формулой:

t = 1,1*(R3+R6)*C2

Резистор R6 ограничивает минимальное время задержки 3 сек. Конденсатор C1 необходим для фильтрации помех в питании микросхемы DD1 и должен располагаться максимально к ней близко.

Резистор R4 задает ток светодиода оптосимистора и при применении аналогов MOC3043, например MOC3042 или MOC3041 должен быть уменьшен, так как им необходим больший ток для работы.

Данная схема может применяться и для коммутации пускателей, но учтите, что в случаях малых токов пускателей возможно ложное срабатывание или их жужжание в отключенном режиме, так как они могут включаться через цепочку R5–C5. В таком случае, эта цепочка требует коррекции по номиналам.

Обратим внимание, что часть схемы, отвечающую за получение постоянного напряжения 12 В можно заменить на готовый блок питания (адаптер питания), с выходным напряжением 12 В.

Такое устройство можно купить сразу в готовом виде, либо применить ненужный от какого-либо устройства: роутера, модема, телефона или подобного. В таком случае устройство реле заметно упростится.

Трансформатор T1 можно заменить на любой другой с номинальным входным напряжением 220 Вольт, выходным - 12 Вольт.

Если схема реле задержки выключения вас заинтересовала и вы бы хотели скачать файл с изображением разведенной печатной платы - оставляйте ваши комментарии.

Видео по теме - другой вариант

Рубрика: Метки: ,