Космические процессы и минералообразование. Курсовая работа: Влияние космических процессов и явлений на развитие Земли Космические процессы




А.Г.Жабин, доктор геолого-минералогических наук

В кристаллах минералов, горных породах, слоистых толщах осадков фиксируются и миллиарды лет сохраняются признаки, характеризующие не только эволюцию самой Земли, но и ее взаимодействие с космосом.

Земные и космические явления.

В геологических объектах языком физических и химических свойств записана своеобразная генетическая информация о воздействии космических процессов на Землю. Говоря о методе извлечения этой информации, известный шведский астрофизик Х. Альвен утверждает следующее:

"Поскольку никто не может знать, что произошло 45 млрд. лет тому назад, мы вынуждены начинать с современного состояния Солнечной системы и шаг за шагом восстанавливать все более и более ранние стадии ее развития, Этот принцип, выдвигающий на первый план ненаблюдаемые явления, лежит в основе современного подхода к изучению геологической эволюции Земли; его девиз: "настоящее есть ключ к прошлому".

В самом деле, сейчас уже можно качественно диагностировать многие виды внешнего космического влияния на Землю. О столкновении ее с гигантскими метеоритами свидетельстеуют астроблемы на земной поверхности (Земля и Вселенная, 1975, 6, с. 13-17.-Ред.), появление более плотных видов минералов, смещение и плавление различных пород. Диагностировать можно также космическую пыль и проникающие космические частицы. Интересно исследовать связь тектонической активности планеты с различными хроноритмами (временнЫми ритмами), обусловленными космическими процессами, такими, как солнечная активность, вспышки сверхновых звезд, движение Солнца и Солнечной системы в Галактике.

Обсудим вопрос, можно ли выявить космогенные хроноритмы в свойствах земных минералов. Ритмический и масштабный, - охватывающий всю планету характер солнечной активности и других космофизических факторов может служить основой общепланетарных "реперов" времени. Поэтому поиски и диагностика материальных следов подобных хроноритмов можно рассматривать как новое перспективное направление. В нем совместно используются изотопный (радиологический), биостратиграфический (на основе ископаемых остатков животных и растений) и космогенноритмический методы, которые в своем развитии будут дополнять друг друга. Исследования в этом направлении уже начались: описаны астроблемы, в соляных толщах обнаружены слои, содержащие космическую пыль, установлена периодичность кристаллизации веществ в пещерах. Но если в биологии и биофизике в последнее время возникли новые специальные разделы косморитмология, гелиобиология, биоритмология, дендрохронология, то минералогия пока еще отстает от подобных исследований.

Периодические ритмы.

Особое внимание сейчас обращается на поиски возможных форм фиксации в минералах 11-летнего цикла солнечной активности. Этот хроноритм фиксируется не только на современных, но и на палеообъектах в глинисто-песчаных осадках фанерозоя, в водорослях СоIIеniа из ордовика (500 млн. лет тому назад), на срезах ископаемых пермских (285 млн. лет) окаменелых деревьев. Отражение подобной космогенной ритмичности на минералах, выросших на нашей планете в зоне гипергенеза, то есть в самой верхней части земной коры, мы только начинаем искать. Но несомненно, что климатическая периодичность космогенной природы будет проявляться через различную интенсивность циркуляции поверхностных и грунтовых вод (чередование засух и обводнений), различный прогрев верхней пленки земной коры, через изменение скорости разрушения гор, осадконакопления (Земля и Вселенная, 1980, 1, с.2-6. - Ред.). А все эти факторы влияют на земную кору.

Наиболее перспективные места для поиска признаков подобных космогенных хроноритмов это кора выветривания, карстовые пещеры, зоны окисления сульфидных месторождений, осадки соляного и флишевого типа (последние представляют собой слоистое чередование пород разного состава, обусловленное колебательными движениями земной коры), так называемые ленточные глины, связанные с периодическим таянием ледников.

Приведем несколько примеров периодичности, зафиксированной при росте кристаллов минералов. Хорошо изучены кальцитовые сталактиты (СаСО3) из пещер Зауерланда (ФРГ). Установлено, что средняя толщина нарастающего на них каждый год слоя весьма мала, всего 0,0144 мм. (скорость роста примерно 1 мм. за 70 лет), а общий возраст сталактита около 12000 лет. Но на фоне зон, или оболочек, с годовой периодичностью на сталактитах обнаружены и более толстые зоны, которые нарастали через 10 - 11 -летние промежутки. Другой пример кристаллы целестина (SгSO4) размером до 10 см, выросшие в пустотах среди силурийских доломитов Огайо (США). В них обнаружена весьма тонкая хорошо выдержанная зональность. Мощность одной пары зон (светлой и темной) колеблется от З до 70 мкм., но в некоторых местах, где имеется много тысяч таких пар, мощность более стабильная 7,5 - 10,6 мкм. Микрозондом удалось определить, что светлые и темные зоны различаются по величине отношения Sr/Ва и кривая имеет пульсирующий характер (осадочные доломиты к моменту их выщелачивания и образования пустот стали полностью окаменевшими). После рассмотрения возможных причин возникновения подобной зональности предпочтение было отдано годовой периодичности условий кристаллизации. По-видимому, теплые и горячие хлоридные воды, содержащие Sr и Ва (температура вод колеблется от 68 до 114С) и имеющие направление движения в недрах Земли вверх, периодически, раз в году, разбавлялись поверхностными водами. В результате могла возникнуть тонкая зональность кристаллов целестина.

Исследование тонкослоистых корок сфалерита из Теннеси (США), найденных в пределах рудного месторождения Пайн Пойнт, также показало периодичность нарастания оболочек, или зон, на этих корках. Мощность их около 5 - 10 мкм., причем более толстые чередуются через 9 - 11 тонких зон. Годовая периодичность в этом случае объясняется тем, что проникающие в рудное месторождение грунтовые воды изменяют объем и состав растворов.

Тонкая годичная зональность имеется также в агате, растущем в приповерхностном слое земной коры. В описаниях агатов, сделанных еще в прошлом веке, отмечается иногда до 17000 тонких слоев в одном дюйме. Таким образом, одиночная зона (светлая и темная полоса) имеет мощность всего 1,5 мкм. Столь медленную кристаллизацию минералов агата интересно сравнить с ростом конкреций в океане. Эта скорость 0,03 - 0,003 мм. за тысячу лет, или 30 - 3 мкм. в год. По-видимому, в приведенных примерах обнаруживается сложная цепь взаимосвязанных явлений, обусловливающих влияние 11-летнего цикла солнечной активности на рост кристаллов минералов в поверхностном слое земной коры. Вероятно, изменение метеорологических условий под действием солнечного корпускулярного излучения проявляется, в частности, и в колебаниях обводненности верхних участков земной коры.

Вспышки сверхновых.

Помимо годовых и 11-летних хроноритмов существуют одиночные космогенные "реперы" времени. Здесь мы имеем в виду вспышки сверхновых звезд. Ленинградский ботаник Н. В. Ловеллиус изучил структуру годичных колец 800-летнего дерева арчи, растущего на высоте 3000 м на одном из склонов Зеравшанского хребта. Он обнаружил периоды, когда прирост годичных колец замедлялся. Эти периоды почти точно падают на 1572 и 1604 годы, когда в небе вспыхивали сверхновые звезды: сверхновая Тихо Браге и сверхновая Кеплера. Нам пока не известны геохимические и минералогические следствия интенсивных потоков космических лучей в связи с пятью вспышками сверхновых, происшедшими в нашей Галактике за последнее тысячелетие (1006, 1054, 1572, 1604, 1667 годы), и мы пока не умеем диагностировать подобные признаки. Важно здесь не столько видеть следы первичных космичеких лучей в земных минералах (тут кое-что уже известно), сколько найти метод определения интервалов времени, когда в прошлом космические лучи особенно интенсивно воздействовали на нашу планету. Такие интервалы времени, синхронизированные по всей Земле, можно будет сравнить с повсеместно распространенными слоями известного возраста маркирующими стратиграфическими горизонтами. По мнению астрофизиков, за время существования Земли около десяти раз ближайшие к Солнцу звезды вспыхивали как сверхновые. Таким образом, природа дает в наше распоряжение минимум десять последовательных хронореперов, единых для всей планеты. Минералогам же предстоит найти следы подобных космогенных временных реперов в свойствах кристаллов минералов и слагаемых ими горных пород. В качестве примера можно привести лунный реголит. В нем отражена история воздействия на Луну солнечного ветра, галактических космических лучей, микрометеоритов. Причем крупные космогенные хроноритмы здесь должны проявляться более контрастно ведь Луна не имеет атмосферы, и, значит, космические воздействия на нее не так сильно искажаются. Исследование реголита показало, что интенсивность протонного облучения на Луне с 1953 по 1963 год в четыре раза превышала среднюю интенсивность для нескольких предшествующих миллионов лет.

Идея о причинной связи периодичности геологических процессов на Земле с периодичностью взаимодействия Земли и Космоса все более проникает в сознание геологов и планетологов. Теперь стало ясно, что периодизация геологической истории, геохронологии связана с солнечной деятельностью единством временнОй структуры. Но недавно получены новые данные. Оказалось, что общепланетарные тектоно-магматические (минералогические) эпохи коррелируют с длительностью галактического года. Например, для послеархейского времени удалось установить девять максимумов отложения минерального вещества. Они имели место примерно 115, 355, 530, 750, 980, 1150, 1365, 1550 и 1780 млн. лет назад. Интервалы между этими максимумами составляют 170 - 240 млн. лет (в среднем 200 млн. лет), то есть равны длительности галактического года.

Член-корреспондент АН СССР Г. Л. Поспелов, анализируя место геологии в естествознании, отметил, что изучение многоступенчатых геологических комплексов приведет эту науку к открытию явлений типа "квантования" различных процессов в макромире. Минералоги вместе с геологами-стратиграфами, астрогеологами, астрофизиками собирают факты, которые в будущем позволят составить общую для всех планет Солнечной системы шкалу времени.

Схематический разрез слоистого участка земной коры. Видны выходящие на поверхность (слева) и "слепые" (справа) гидротермальные жилы (черные жирные линии). В левых происходит обмен гидротерм с поверхностными грунтовыми водами.

1, 2, 3, 4, - последовательные стадии роста минералов: кристаллов кварца и пирита. Рост кристаллов в недрах Земли оказывается связанным с 11-летним циклом солнечной активности.

Похожие рефераты:

Геология (от гео. и.логия), комплекс наук о земной коре и более глубоких сферах Земли; в узком смысле слова - наука о составе, строении, движениях и истории развития земной коры и размещении в ней полезных ископаемых.

Онтогеническим анализом уникальных слоистых гравитационных текстур и сферолитовых сростков никелина и раммельсбергита выявлен дендритный механизм последовательного роста слоев, а также одновременный рост сфероидолитов никелина.

Образование и распространение минералов. Химический состав минералов. Структуры минералов и полиморфизм. Классификация минералов. Понятие о горных породах.

емная кора обладает различной подвижностью. На поверхности Земли постоянно возникают горные системы и океанические впадины. Осадочные породы первоначально залегают горизонтально.

Понятие о метаморфизме. Факторы метаморфизма. Типы метаморфизма. Стадийность, зоны и фации метаморфизма. Метаморфические горные породы.

Газовая оболочка Земли – ее атмосфера, как и другие земные оболочки, включая гидросферу и биосферу, является производной внутренней активности планеты. Она формировалась за счет дегазации и вулканизма из зоны астеносферы.

Где происходят вулканические явления в кайнозое? Как процессы вулканизма преобразуют земную кору.

Реальное магнитное поле, наблюдаемое на поверхности Земли, отражает суммарный эффект действия различных источников.

Литосфера - внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород.

Безотчетный инстинктивный страх перед слепыми силами природы был присущ мироощущению первобытного человека.

Отголоски этого страха, особенно перед малоизученным космосом, действовали на людей и в последующие эпохи. Как ни странно, но чем больше человек познавал свое космическое окружение, тем большее беспокойство вызывала у него возможность глобальной космической катастрофы. В начале столетия среди населения земного шара широко распространились панические настроения в связи с предстоящим пересечением орбиты Земли хвостом кометы Галлея. Как известно, совсем недавно в различных кругах за рубежом вспыхнула паника в связи с пресловутым «парадом планет».

Если Вы хотите хорошо покушать и посетить достойный татарский ресторан, то рекомендуем обратиться к профессионалам татарской кухни. Будь то праздничный банкет, день рождения, юбилей или корпоративная вечеринка, Вы, в любом случае, останетесь довольны обслуживанием и предложенными блюдами.

По могут ли действительно космические явления представлять собой какую-нибудь опасность для Земли? Могут ли вообще космические процессы оказывать влияние на земные процессы? Имело ли место подобное вмешательство в процесс эволюции биосферы раньше?

Методологические принципы, на которых строится изучение истории Земли, а также важнейшие постулаты теории эволюции биосферы существенным образом зависят от ответов на эти вопросы. Проиллюстрируем это на простом примере. Если крупномасштабные изменения экологических условий на поверхности Земли происходят по чисто земным причинам, они должны происходить медленно, поскольку в земной коре невозможно накопить энергию для быстрого (скажем, в течение нескольких суток) глобального изменения экологической обстановки. Знаменитое извержение вулкана Санторипе XV в. до и. э. (приведшее к упадку минойскую цивилизацию) или взрыв вулкана Тамбора в 1815 г. (пыль от этого взрыва вызвала внезапное похолодание и снегопады на всем Северном полушарии) имели, как полагают, предельные энерговыделения (порядка 1027 эрг). Медленное, постепенное изменение экологических условий сразу предопределяет в этом случае и выбор моделей биологической эволюции.

Однако если в историю Земли какой-то вклад вносили астрофизические явления (например, близкий взрыв Сверхновой), то глобальные изменения наступали внезапно и быстро (например, резко увеличивался бы приземной поток ультрафиолетового излучения после близкого взрыва Сверхповой). Факты, указывающие на то, что какой-то вклад в земную экологию вносят процессы, протекающие вне Земли (в ближнем и дальнем космосе), накапливались уже давно. Мысль о том, что эволюция биосферы протекает в условиях, определяемых совокупностью чисто земных и космических явлений, высказывали в разные времена X. Шепли и И. С. Шкловский. Этой точки зрения придерживаются Ф. Хойл и В. Маккри.

В последние годы постепенно оформилось особое направление исследований, получившее название «космического катастрофизма». Поскольку планомерные целенаправленные исследования в этом направлении начались сравнительно недавно, конкретных устоявшихся результатов получено не так уж много. Так, установлено, что солнечная активность изменяется на протяжении длительных интервалов времени во много больших масштабах, чем это следует из сравнительно короткого ряда телескопических наблюдений Солнца. Однако существуют ли реально так называемые супервспышки, которые могли бы оказывать повреждающее воздействие на биосферу, не ясно. Нет сомнений в том, что Сверхновые десятки раз вспыхивали в ближайших окрестностях Солнечной системы и что такие события воздействовали на нашу среду обитания, но связь конкретных кризисных этапов в развитии биосферы с этими явлениями продолжает оставаться неизвестной. За последние 3 млрд. лет истории биосферы Солнечная система много раз проходила через молекулярные облака межзвездного газа, что неизбежно имело какие-то экологические последствия, но какие именно - сказать пока нельзя.

Все же некоторые из теоретических и наблюдательных результатов, полученных в рамках данного направления, очень интересны. И, может быть, самым главным итогом исследований, о которых пойдет речь в этой брошюре, является прежде всего то, что в настоящее время приведено достаточно соображении и аргументов, демонстрирующих необходимость учета астрофизических данных в экологии и палеоэкологии, в связи с чем выдвижение конкретной гипотезы о влиянии какого-либо космического процесса на биологическую историю сейчас уже не представляется псевдонаучной ересью.

Любое новое направление исследований имеет, разумеется, свою историю, и «космический катастрофизм » - отнюдь не исключение. За недостатком места мы не можем здесь рассказать об истоках и истории этих идей. Единственное, на что хотелось бы обратить внимание,- это определенная связь данного направления исследований с идеями книги знаменитого естествоиспытателя Ж. Кювье «Рассуждение о переворотах на поверхности земного шара» (1812 г.). Излагается история геологических катастроф, автор не связывает их с космосом. Но современный «космический катастрофизм» отмечает, что космическое воздействие на историю Земли, на эволюцию биосферы носит нередко именно катастрофический характер. «Итак, жизнь не раз потрясалась на нашей Земле страшными событиями» - эти слова Ж. Кювье очень подошли бы в качестве эпиграфа ко многим публикациям по проблемам «космического катастрофизма».

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

А.Г.Жабин, доктор геолого-минералогических наук

В кристаллах минералов, горных породах, слоистых толщах осадков фиксируются и миллиарды лет сохраняются признаки, характеризующие не только эволюцию самой Земли, но и ее взаимодействие с космосом.

Земные и космические явления.

В геологических объектах языком физических и химических свойств записана своеобразная генетическая информация о воздействии космических процессов на Землю. Говоря о методе извлечения этой информации, известный шведский астрофизик Х. Альвен утверждает следующее:

"Поскольку никто не может знать, что произошло 45 млрд. лет тому назад, мы вынуждены начинать с современного состояния Солнечной системы и шаг за шагом восстанавливать все более и более ранние стадии ее развития, Этот принцип, выдвигающий на первый план ненаблюдаемые явления, лежит в основе современного подхода к изучению геологической эволюции Земли; его девиз: "настоящее есть ключ к прошлому".

В самом деле, сейчас уже можно качественно диагностировать многие виды внешнего космического влияния на Землю. О столкновении ее с гигантскими метеоритами свидетельстеуют астроблемы на земной поверхности (Земля и Вселенная, 1975, 6, с. 13-17.-Ред.), появление более плотных видов минералов, смещение и плавление различных пород. Диагностировать можно также космическую пыль и проникающие космические частицы. Интересно исследовать связь тектонической активности планеты с различными хроноритмами (временнЫми ритмами), обусловленными космическими процессами, такими, как солнечная активность, вспышки сверхновых звезд, движение Солнца и Солнечной системы в Галактике.

Обсудим вопрос, можно ли выявить космогенные хроноритмы в свойствах земных минералов. Ритмический и масштабный, - охватывающий всю планету характер солнечной активности и других космофизических факторов может служить основой общепланетарных "реперов" времени. Поэтому поиски и диагностика материальных следов подобных хроноритмов можно рассматривать как новое перспективное направление. В нем совместно используются изотопный (радиологический), биостратиграфический (на основе ископаемых остатков животных и растений) и космогенноритмический методы, которые в своем развитии будут дополнять друг друга. Исследования в этом направлении уже начались: описаны астроблемы, в соляных толщах обнаружены слои, содержащие космическую пыль, установлена периодичность кристаллизации веществ в пещерах. Но если в биологии и биофизике в последнее время возникли новые специальные разделы косморитмология, гелиобиология, биоритмология, дендрохронология, то минералогия пока еще отстает от подобных исследований.

Периодические ритмы.

Особое внимание сейчас обращается на поиски возможных форм фиксации в минералах 11-летнего цикла солнечной активности. Этот хроноритм фиксируется не только на современных, но и на палеообъектах в глинисто-песчаных осадках фанерозоя, в водорослях СоIIеniа из ордовика (500 млн. лет тому назад), на срезах ископаемых пермских (285 млн. лет) окаменелых деревьев. Отражение подобной космогенной ритмичности на минералах, выросших на нашей планете в зоне гипергенеза, то есть в самой верхней части земной коры, мы только начинаем искать. Но несомненно, что климатическая периодичность космогенной природы будет проявляться через различную интенсивность циркуляции поверхностных и грунтовых вод (чередование засух и обводнений), различный прогрев верхней пленки земной коры, через изменение скорости разрушения гор, осадконакопления (Земля и Вселенная, 1980, 1, с.2-6. - Ред.). А все эти факторы влияют на земную кору.

Наиболее перспективные места для поиска признаков подобных космогенных хроноритмов это кора выветривания, карстовые пещеры, зоны окисления сульфидных месторождений, осадки соляного и флишевого типа (последние представляют собой слоистое чередование пород разного состава, обусловленное колебательными движениями земной коры), так называемые ленточные глины, связанные с периодическим таянием ледников.

Приведем несколько примеров периодичности, зафиксированной при росте кристаллов минералов. Хорошо изучены кальцитовые сталактиты (СаСО3) из пещер Зауерланда (ФРГ). Установлено, что средняя толщина нарастающего на них каждый год слоя весьма мала, всего 0,0144 мм. (скорость роста примерно 1 мм. за 70 лет), а общий возраст сталактита около 12000 лет. Но на фоне зон, или оболочек, с годовой периодичностью на сталактитах обнаружены и более толстые зоны, которые нарастали через 10 - 11 -летние промежутки. Другой пример кристаллы целестина (SгSO4) размером до 10 см, выросшие в пустотах среди силурийских доломитов Огайо (США). В них обнаружена весьма тонкая хорошо выдержанная зональность. Мощность одной пары зон (светлой и темной) колеблется от З до 70 мкм., но в некоторых местах, где имеется много тысяч таких пар, мощность более стабильная 7,5 - 10,6 мкм. Микрозондом удалось определить, что светлые и темные зоны различаются по величине отношения Sr/Ва и кривая имеет пульсирующий характер (осадочные доломиты к моменту их выщелачивания и образования пустот стали полностью окаменевшими). После рассмотрения возможных причин возникновения подобной зональности предпочтение было отдано годовой периодичности условий кристаллизации. По-видимому, теплые и горячие хлоридные воды, содержащие Sr и Ва (температура вод колеблется от 68 до 114С) и имеющие направление движения в недрах Земли вверх, периодически, раз в году, разбавлялись поверхностными водами. В результате могла возникнуть тонкая зональность кристаллов целестина.

Исследование тонкослоистых корок сфалерита из Теннеси (США), найденных в пределах рудного месторождения Пайн Пойнт, также показало периодичность нарастания оболочек, или зон, на этих корках. Мощность их около 5 - 10 мкм., причем более толстые чередуются через 9 - 11 тонких зон. Годовая периодичность в этом случае объясняется тем, что проникающие в рудное месторождение грунтовые воды изменяют объем и состав растворов.

Тонкая годичная зональность имеется также в агате, растущем в приповерхностном слое земной коры. В описаниях агатов, сделанных еще в прошлом веке, отмечается иногда до 17000 тонких слоев в одном дюйме. Таким образом, одиночная зона (светлая и темная полоса) имеет мощность всего 1,5 мкм. Столь медленную кристаллизацию минералов агата интересно сравнить с ростом конкреций в океане. Эта скорость 0,03 - 0,003 мм. за тысячу лет, или 30 - 3 мкм. в год. По-видимому, в приведенных примерах обнаруживается сложная цепь взаимосвязанных явлений, обусловливающих влияние 11-летнего цикла солнечной активности на рост кристаллов минералов в поверхностном слое земной коры. Вероятно, изменение метеорологических условий под действием солнечного корпускулярного излучения проявляется, в частности, и в колебаниях обводненности верхних участков земной коры.

Вспышки сверхновых.

Помимо годовых и 11-летних хроноритмов существуют одиночные космогенные "реперы" времени. Здесь мы имеем в виду вспышки сверхновых звезд. Ленинградский ботаник Н. В. Ловеллиус изучил структуру годичных колец 800-летнего дерева арчи, растущего на высоте 3000 м на одном из склонов Зеравшанского хребта. Он обнаружил периоды, когда прирост годичных колец замедлялся. Эти периоды почти точно падают на 1572 и 1604 годы, когда в небе вспыхивали сверхновые звезды: сверхновая Тихо Браге и сверхновая Кеплера. Нам пока не известны геохимические и минералогические следствия интенсивных потоков космических лучей в связи с пятью вспышками сверхновых, происшедшими в нашей Галактике за последнее тысячелетие (1006, 1054, 1572, 1604, 1667 годы), и мы пока не умеем диагностировать подобные признаки. Важно здесь не столько видеть следы первичных космичеких лучей в земных минералах (тут кое-что уже известно), сколько найти метод определения интервалов времени, когда в прошлом космические лучи особенно интенсивно воздействовали на нашу планету. Такие интервалы времени, синхронизированные по всей Земле, можно будет сравнить с повсеместно распространенными слоями известного возраста маркирующими стратиграфическими горизонтами. По мнению астрофизиков, за время существования Земли около десяти раз ближайшие к Солнцу звезды вспыхивали как сверхновые. Таким образом, природа дает в наше распоряжение минимум десять последовательных хронореперов, единых для всей планеты. Минералогам же предстоит найти следы подобных космогенных временных реперов в свойствах кристаллов минералов и слагаемых ими горных пород. В качестве примера можно привести лунный реголит. В нем отражена история воздействия на Луну солнечного ветра, галактических космических лучей, микрометеоритов. Причем крупные космогенные хроноритмы здесь должны проявляться более контрастно ведь Луна не имеет атмосферы, и, значит, космические воздействия на нее не так сильно искажаются. Исследование реголита показало, что интенсивность протонного облучения на Луне с 1953 по 1963 год в четыре раза превышала среднюю интенсивность для нескольких предшествующих миллионов лет.

Идея о причинной связи периодичности геологических процессов на Земле с периодичностью взаимодействия Земли и Космоса все более проникает в сознание геологов и планетологов. Теперь стало ясно, что периодизация геологической истории, геохронологии связана с солнечной деятельностью единством временнОй структуры. Но недавно получены новые данные. Оказалось, что общепланетарные тектоно-магматические (минералогические) эпохи коррелируют с длительностью галактического года. Например, для послеархейского времени удалось установить девять максимумов отложения минерального вещества. Они имели место примерно 115, 355, 530, 750, 980, 1150, 1365, 1550 и 1780 млн. лет назад. Интервалы между этими максимумами составляют 170 - 240 млн. лет (в среднем 200 млн. лет), то есть равны длительности галактического года.

Член-корреспондент АН СССР Г. Л. Поспелов, анализируя место геологии в естествознании, отметил, что изучение многоступенчатых геологических комплексов приведет эту науку к открытию явлений типа "квантования" различных процессов в макромире. Минералоги вместе с геологами-стратиграфами, астрогеологами, астрофизиками собирают факты, которые в будущем позволят составить общую для всех планет Солнечной системы шкалу времени.

Космические процессы и минералообразование

А.Г.Жабин, доктор геолого-минералогических наук

В кристаллах минералов, горных породах, слоистых толщах осадков фиксируются и миллиарды лет сохраняются признаки, характеризующие не только эволюцию самой Земли, но и ее взаимодействие с космосом.

Земные и космические явления.

В геологических объектах языком физических и химических свойств записана своеобразная генетическая информация о воздействии космических процессов на Землю. Говоря о методе извлечения этой информации, известный шведский астрофизик Х. Альвен утверждает следующее:

"Поскольку никто не может знать, что произошло 45 млрд. лет тому назад, мы вынуждены начинать с современного состояния Солнечной системы и шаг за шагом восстанавливать все более и более ранние стадии ее развития, Этот принцип, выдвигающий на первый план ненаблюдаемые явления, лежит в основе современного подхода к изучению геологической эволюции Земли; его девиз: "настоящее есть ключ к прошлому".

В самом деле, сейчас уже можно качественно диагностировать многие виды внешнего космического влияния на Землю. О столкновении ее с гигантскими метеоритами свидетельстеуют астроблемы на земной поверхности (Земля и Вселенная, 1975, 6, с. 13-17.-Ред.), появление более плотных видов минералов, смещение и плавление различных пород. Диагностировать можно также космическую пыль и проникающие космические частицы. Интересно исследовать связь тектонической активности планеты с различными хроноритмами (временнЫми ритмами), обусловленными космическими процессами, такими, как солнечная активность, вспышки сверхновых звезд, движение Солнца и Солнечной системы в Галактике.

Обсудим вопрос, можно ли выявить космогенные хроноритмы в свойствах земных минералов. Ритмический и масштабный, - охватывающий всю планету характер солнечной активности и других космофизических факторов может служить основой общепланетарных "реперов" времени. Поэтому поиски и диагностика материальных следов подобных хроноритмов можно рассматривать как новое перспективное направление. В нем совместно используются изотопный (радиологический), биостратиграфический (на основе ископаемых остатков животных и растений) и космогенноритмический методы, которые в своем развитии будут дополнять друг друга. Исследования в этом направлении уже начались: описаны астроблемы, в соляных толщах обнаружены слои, содержащие космическую пыль, установлена периодичность кристаллизации веществ в пещерах. Но если в биологии и биофизике в последнее время возникли новые специальные разделы косморитмология, гелиобиология, биоритмология, дендрохронология, то минералогия пока еще отстает от подобных исследований.

Периодические ритмы.

Особое внимание сейчас обращается на поиски возможных форм фиксации в минералах 11-летнего цикла солнечной активности. Этот хроноритм фиксируется не только на современных, но и на палеообъектах в глинисто-песчаных осадках фанерозоя, в водорослях СоIIеniа из ордовика (500 млн. лет тому назад), на срезах ископаемых пермских (285 млн. лет) окаменелых деревьев. Отражение подобной космогенной ритмичности на минералах, выросших на нашей планете в зоне гипергенеза, то есть в самой верхней части земной коры, мы только начинаем искать. Но несомненно, что климатическая периодичность космогенной природы будет проявляться через различную интенсивность циркуляции поверхностных и грунтовых вод (чередование засух и обводнений), различный прогрев верхней пленки земной коры, через изменение скорости разрушения гор, осадконакопления (Земля и Вселенная, 1980, 1, с.2-6. - Ред.). А все эти факторы влияют на земную кору.

Наиболее перспективные места для поиска признаков подобных космогенных хроноритмов это кора выветривания, карстовые пещеры, зоны окисления сульфидных месторождений, осадки соляного и флишевого типа (последние представляют собой слоистое чередование пород разного состава, обусловленное колебательными движениями земной коры), так называемые ленточные глины, связанные с периодическим таянием ледников.

Приведем несколько примеров периодичности, зафиксированной при росте кристаллов минералов. Хорошо изучены кальцитовые сталактиты (СаСО3) из пещер Зауерланда (ФРГ). Установлено, что средняя толщина нарастающего на них каждый год слоя весьма мала, всего 0,0144 мм. (скорость роста примерно 1 мм. за 70 лет), а общий возраст сталактита около 12000 лет. Но на фоне зон, или оболочек, с годовой периодичностью на сталактитах обнаружены и более толстые зоны, которые нарастали через 10 - 11 -летние промежутки. Другой пример кристаллы целестина (SгSO4) размером до 10 см, выросшие в пустотах среди силурийских доломитов Огайо (США). В них обнаружена весьма тонкая хорошо выдержанная зональность. Мощность одной пары зон (светлой и темной) колеблется от З до 70 мкм., но в некоторых местах, где имеется много тысяч таких пар, мощность более стабильная 7,5 - 10,6 мкм. Микрозондом удалось определить, что светлые и темные зоны различаются по величине отношения Sr/Ва и кривая имеет пульсирующий характер (осадочные доломиты к моменту их выщелачивания и образования пустот стали полностью окаменевшими). После рассмотрения возможных причин возникновения подобной зональности предпочтение было отдано годовой периодичности условий кристаллизации. По-видимому, теплые и горячие хлоридные воды, содержащие Sr и Ва (температура вод колеблется от 68 до 114С) и имеющие направление движения в недрах Земли вверх, периодически, раз в году, разбавлялись поверхностными водами. В результате могла возникнуть тонкая зональность кристаллов целестина.

Исследование тонкослоистых корок сфалерита из Теннеси (США), найденных в пределах рудного месторождения Пайн Пойнт, также показало периодичность нарастания оболочек, или зон, на этих корках. Мощность их около 5 - 10 мкм., причем более толстые чередуются через 9 - 11 тонких зон. Годовая периодичность в этом случае объясняется тем, что проникающие в рудное месторождение грунтовые воды изменяют объем и состав растворов.

Тонкая годичная зональность имеется также в агате, растущем в приповерхностном слое земной коры. В описаниях агатов, сделанных еще в прошлом веке, отмечается иногда до 17000 тонких слоев в одном дюйме. Таким образом, одиночная зона (светлая и темная полоса) имеет мощность всего 1,5 мкм. Столь медленную кристаллизацию минералов агата интересно сравнить с ростом конкреций в океане. Эта скорость 0,03 - 0,003 мм. за тысячу лет, или 30 - 3 мкм. в год. По-видимому, в приведенных примерах обнаруживается сложная цепь взаимосвязанных явлений, обусловливающих влияние 11-летнего цикла солнечной активности на рост кристаллов минералов в поверхностном слое земной коры. Вероятно, изменение метеорологических условий под действием солнечного корпускулярного излучения проявляется, в частности, и в колебаниях обводненности верхних участков земной коры.

Вспышки сверхновых.

Помимо годовых и 11-летних хроноритмов существуют одиночные космогенные "реперы" времени. Здесь мы имеем в виду вспышки сверхновых звезд. Ленинградский ботаник Н. В. Ловеллиус изучил структуру годичных колец 800-летнего дерева арчи, растущего на высоте 3000 м на одном из склонов Зеравшанского хребта. Он обнаружил периоды, когда прирост годичных колец замедлялся. Эти периоды почти точно падают на 1572 и 1604 годы, когда в небе вспыхивали сверхновые звезды: сверхновая Тихо Браге и сверхновая Кеплера. Нам пока не известны геохимические и минералогические следствия интенсивных потоков космических лучей в связи с пятью вспышками сверхновых, происшедшими в нашей Галактике за последнее тысячелетие (1006, 1054, 1572, 1604, 1667 годы), и мы пока не умеем диагностировать подобные признаки. Важно здесь не столько видеть следы первичных космичеких лучей в земных минералах (тут кое-что уже известно), сколько найти метод определения интервалов времени, когда в прошлом космические лучи особенно интенсивно воздействовали на нашу планету. Такие интервалы времени, синхронизированные по всей Земле, можно будет сравнить с повсеместно распространенными слоями известного возраста маркирующими стратиграфическими горизонтами. По мнению астрофизиков, за время существования Земли около десяти раз ближайшие к Солнцу звезды вспыхивали как сверхновые. Таким образом, природа дает в наше распоряжение минимум десять последовательных хронореперов, единых для всей планеты. Минералогам же предстоит найти следы подобных космогенных временных реперов в свойствах кристаллов минералов и слагаемых ими горных пород. В качестве примера можно привести лунный реголит. В нем отражена история воздействия на Луну солнечного ветра, галактических космических лучей, микрометеоритов. Причем крупные космогенные хроноритмы здесь должны проявляться более контрастно ведь Луна не имеет атмосферы, и, значит, космические воздействия на нее не так сильно искажаются. Исследование реголита показало, что интенсивность протонного облучения на Луне с 1953 по 1963 год в четыре раза превышала среднюю интенсивность для нескольких предшествующих миллионов лет.

Идея о причинной связи периодичности геологических процессов на Земле с периодичностью взаимодействия Земли и Космоса все более проникает в сознание геологов и планетологов. Теперь стало ясно, что периодизация геологической истории, геохронологии связана с солнечной деятельностью единством временнОй структуры. Но недавно получены новые данные. Оказалось, что общепланетарные тектоно-магматические (минералогические) эпохи коррелируют с длительностью галактического года. Например, для послеархейского времени удалось установить девять максимумов отложения минерального вещества. Они имели место примерно 115, 355, 530, 750, 980, 1150, 1365, 1550 и 1780 млн. лет назад. Интервалы между этими максимумами составляют 170 - 240 млн. лет (в среднем 200 млн. лет), то есть равны длительности галактического года.

Член-корреспондент АН СССР Г. Л. Поспелов, анализируя м

А.Г.Жабин, доктор геолого-минералогических наук

В кристаллах минералов, горных породах, слоистых толщах осадков фиксируются и миллиарды лет сохраняются признаки, характеризующие не только эволюцию самой Земли, но и ее взаимодействие с космосом.

Земные и космические явления.

В геологических объектах языком физических и химических свойств записана своеобразная генетическая информация о воздействии космических процессов на Землю. Говоря о методе извлечения этой информации, известный шведский астрофизик Х. Альвен утверждает следующее:

"Поскольку никто не может знать, что произошло 45 млрд. лет тому назад, мы вынуждены начинать с современного состояния Солнечной системы и шаг за шагом восстанавливать все более и более ранние стадии ее развития, Этот принцип, выдвигающий на первый план ненаблюдаемые явления, лежит в основе современного подхода к изучению геологической эволюции Земли; его девиз: "настоящее есть ключ к прошлому".

В самом деле, сейчас уже можно качественно диагностировать многие виды внешнего космического влияния на Землю. О столкновении ее с гигантскими метеоритами свидетельстеуют астроблемы на земной поверхности (Земля и Вселенная, 1975, 6, с. 13-17.-Ред.), появление более плотных видов минералов, смещение и плавление различных пород. Диагностировать можно также космическую пыль и проникающие космические частицы. Интересно исследовать связь тектонической активности планеты с различными хроноритмами (временнЫми ритмами), обусловленными космическими процессами, такими, как солнечная активность, вспышки сверхновых звезд, движение Солнца и Солнечной системы в Галактике.

Обсудим вопрос, можно ли выявить космогенные хроноритмы в свойствах земных минералов. Ритмический и масштабный, - охватывающий всю планету характер солнечной активности и других космофизических факторов может служить основой общепланетарных "реперов" времени. Поэтому поиски и диагностика материальных следов подобных хроноритмов можно рассматривать как новое перспективное направление. В нем совместно используются изотопный (радиологический), биостратиграфический (на основе ископаемых остатков животных и растений) и космогенноритмический методы, которые в своем развитии будут дополнять друг друга. Исследования в этом направлении уже начались: описаны астроблемы, в соляных толщах обнаружены слои, содержащие космическую пыль, установлена периодичность кристаллизации веществ в пещерах. Но если в биологии и биофизике в последнее время возникли новые специальные разделы косморитмология, гелиобиология, биоритмология, дендрохронология, то минералогия пока еще отстает от подобных исследований.

Периодические ритмы.

Особое внимание сейчас обращается на поиски возможных форм фиксации в минералах 11-летнего цикла солнечной активности. Этот хроноритм фиксируется не только на современных, но и на палеообъектах в глинисто-песчаных осадках фанерозоя, в водорослях СоIIеniа из ордовика (500 млн. лет тому назад), на срезах ископаемых пермских (285 млн. лет) окаменелых деревьев. Отражение подобной космогенной ритмичности на минералах, выросших на нашей планете в зоне гипергенеза, то есть в самой верхней части земной коры, мы только начинаем искать. Но несомненно, что климатическая периодичность космогенной природы будет проявляться через различную интенсивность циркуляции поверхностных и грунтовых вод (чередование засух и обводнений), различный прогрев верхней пленки земной коры, через изменение скорости разрушения гор, осадконакопления (Земля и Вселенная, 1980, 1, с.2-6. - Ред.). А все эти факторы влияют на земную кору.

Наиболее перспективные места для поиска признаков подобных космогенных хроноритмов это кора выветривания, карстовые пещеры, зоны окисления сульфидных месторождений, осадки соляного и флишевого типа (последние представляют собой слоистое чередование пород разного состава, обусловленное колебательными движениями земной коры), так называемые ленточные глины, связанные с периодическим таянием ледников.

Приведем несколько примеров периодичности, зафиксированной при росте кристаллов минералов. Хорошо изучены кальцитовые сталактиты (СаСО3) из пещер Зауерланда (ФРГ). Установлено, что средняя толщина нарастающего на них каждый год слоя весьма мала, всего 0,0144 мм. (скорость роста примерно 1 мм. за 70 лет), а общий возраст сталактита около 12000 лет. Но на фоне зон, или оболочек, с годовой периодичностью на сталактитах обнаружены и более толстые зоны, которые нарастали через 10 - 11 -летние промежутки. Другой пример кристаллы целестина (SгSO4) размером до 10 см, выросшие в пустотах среди силурийских доломитов Огайо (США). В них обнаружена весьма тонкая хорошо выдержанная зональность. Мощность одной пары зон (светлой и темной) колеблется от З до 70 мкм., но в некоторых местах, где имеется много тысяч таких пар, мощность более стабильная 7,5 - 10,6 мкм. Микрозондом удалось определить, что светлые и темные зоны различаются по величине отношения Sr/Ва и кривая имеет пульсирующий характер (осадочные доломиты к моменту их выщелачивания и образования пустот стали полностью окаменевшими). После рассмотрения возможных причин возникновения подобной зональности предпочтение было отдано годовой периодичности условий кристаллизации. По-видимому, теплые и горячие хлоридные воды, содержащие Sr и Ва (температура вод колеблется от 68 до 114С) и имеющие направление движения в недрах Земли вверх, периодически, раз в году, разбавлялись поверхностными водами. В результате могла возникнуть тонкая зональность кристаллов целестина.

Исследование тонкослоистых корок сфалерита из Теннеси (США), найденных в пределах рудного месторождения Пайн Пойнт, также показало периодичность нарастания оболочек, или зон, на этих корках. Мощность их около 5 - 10 мкм., причем более толстые чередуются через 9 - 11 тонких зон. Годовая периодичность в этом случае объясняется тем, что проникающие в рудное месторождение грунтовые воды изменяют объем и состав растворов.

Тонкая годичная зональность имеется также в агате, растущем в приповерхностном слое земной коры. В описаниях агатов, сделанных еще в прошлом веке, отмечается иногда до 17000 тонких слоев в одном дюйме. Таким образом, одиночная зона (светлая и темная полоса) имеет мощность всего 1,5 мкм. Столь медленную кристаллизацию минералов агата интересно сравнить с ростом конкреций в океане. Эта скорость 0,03 - 0,003 мм. за тысячу лет, или 30 - 3 мкм. в год. По-видимому, в приведенных примерах обнаруживается сложная цепь взаимосвязанных явлений, обусловливающих влияние 11-летнего цикла солнечной активности на рост кристаллов минералов в поверхностном слое земной коры. Вероятно, изменение метеорологических условий под действием солнечного корпускулярного излучения проявляется, в частности, и в колебаниях обводненности верхних участков земной коры.

Вспышки сверхновых.

Помимо годовых и 11-летних хроноритмов существуют одиночные космогенные "реперы" времени. Здесь мы имеем в виду вспышки сверхновых звезд. Ленинградский ботаник Н. В. Ловеллиус изучил структуру годичных колец 800-летнего дерева арчи, растущего на высоте 3000 м на одном из склонов Зеравшанского хребта. Он обнаружил периоды, когда прирост годичных колец замедлялся. Эти периоды почти точно падают на 1572 и 1604 годы, когда в небе вспыхивали сверхновые звезды: сверхновая Тихо Браге и сверхновая Кеплера. Нам пока не известны геохимические и минералогические следствия интенсивных потоков космических лучей в связи с пятью вспышками сверхновых, происшедшими в нашей Галактике за последнее тысячелетие (1006, 1054, 1572, 1604, 1667 годы), и мы пока не умеем диагностировать подобные признаки. Важно здесь не столько видеть следы первичных космичеких лучей в земных минералах (тут кое-что уже известно), сколько найти метод определения интервалов времени, когда в прошлом космические лучи особенно интенсивно воздействовали на нашу планету. Такие интервалы времени, синхронизированные по всей Земле, можно будет сравнить с повсеместно распространенными слоями известного возраста маркирующими стратиграфическими горизонтами. По мнению астрофизиков, за время существования Земли около десяти раз ближайшие к Солнцу звезды вспыхивали как сверхновые. Таким образом, природа дает в наше распоряжение минимум десять последовательных хронореперов, единых для всей планеты. Минералогам же предстоит найти следы подобных космогенных временных реперов в свойствах кристаллов минералов и слагаемых ими горных пород. В качестве примера можно привести лунный реголит. В нем отражена история воздействия на Луну солнечного ветра, галактических космических лучей, микрометеоритов. Причем крупные космогенные хроноритмы здесь должны проявляться более контрастно ведь Луна не имеет атмосферы, и, значит, космические воздействия на нее не так сильно искажаются. Исследование реголита показало, что интенсивность протонного облучения на Луне с 1953 по 1963 год в четыре раза превышала среднюю интенсивность для нескольких предшествующих миллионов лет.

Идея о причинной связи периодичности геологических процессов на Земле с периодичностью взаимодействия Земли и Космоса все более проникает в сознание геологов и планетологов. Теперь стало ясно, что периодизация геологической истории, геохронологии связана с солнечной деятельностью единством временнОй структуры. Но недавно получены новые данные. Оказалось, что общепланетарные тектоно-магматические (минералогические) эпохи коррелируют с длительностью галактического года. Например, для послеархейского времени удалось установить девять максимумов отложения минерального вещества. Они имели место примерно 115, 355, 530, 750, 980, 1150, 1365, 1550 и 1780 млн. лет назад. Интервалы между этими максимумами составляют 170 - 240 млн. лет (в среднем 200 млн. лет), то есть равны длительности галактического года.

Член-корреспондент АН СССР Г. Л. Поспелов, анализируя место геологии в естествознании, отметил, что изучение многоступенчатых геологических комплексов приведет эту науку к открытию явлений типа "квантования" различных процессов в макромире. Минералоги вместе с геологами-стратиграфами, астрогеологами, астрофизиками собирают факты, которые в будущем позволят составить общую для всех планет Солнечной системы шкалу времени.

Схематический разрез слоистого участка земной коры. Видны выходящие на поверхность (слева) и "слепые" (справа) гидротермальные жилы (черные жирные линии). В левых происходит обмен гидротерм с поверхностными грунтовыми водами.

1, 2, 3, 4, - последовательные стадии роста минералов: кристаллов кварца и пирита. Рост кристаллов в недрах Земли оказывается связанным с 11-летним циклом солнечной активности.