Лобачевский прямые пересекаются. В какой геометрии параллельные прямые пересекаются? Сбор и использование персональной информации




Даже полюса связаны меридианами.
Чего уж говорить о параллелях,
которые нет-нет, да и пересекутся...

Если люди встречаются, идя друг другу на встречу, значит - у них разные дороги...
.Аксиома..
Любимая Женщина - ежедневная теорема любви и единственная аксиома мужского счастья...Женщина уверена, что если мужчина ей нравится, то их параллельные пути обязательно должны пересечься...Никто и спорить не будет...
Математика давно нас научила, что две параллельные прямые никогда не пересекаются. Математике то это совершенно безразлично, а вот люди иногда не правильно истолковывают все законы, в том числе - математические, примеряя их на свою жизнь...
Две судьбы существуют независимо друг от друга. Живя своими радостями и горестями, до того времени, пока не пересекаются. Возможно, они и до этого видели друг друга, знали в лицо, слышали голос.
Возможно, даже жили на одном этаже или в одном городе. Но, не имели значения друг для друга, пока однажды - их прямые не пересеклись. В самом прямом смысле! Они столкнулись у входа, наступили друг другу на ноги, оказались в одной очереди, встретились в гостях...

Как угодно, но появилась точка соприкосновения. Изменились траектории. Они подтолкнули друг друга, на секунду замерли, и… понравились друг другу. Что происходит с прямыми? Движение не может прекратиться, если оно остановится, все закончится. Только теперь они попытаются двигаться вместе, в одном направлении....
Направление! Вот что самое главное! Если одна линия тянулась слева на право, а другая - сверху вниз, то, как они соединятся? Никак. Они какое-то время побудут вместе, в одной точке, и вскоре, каждая из них продолжит движение по своей траектории....Если люди ищут счастье в разных его проявлениях, если Она мечтает стать танцовщицей, а Он - полететь в космос. Если Он занимается финансами, а она - домохозяйка. Если Она ненавидит желтый цвет, а Он - носит только эти оттенки, то это не значит, что у них ничего не получится. Это значит - что они немножко разные. Важно, чтоб Они всегда смотрели в одном направлении. В будущее, или в небо, или на закат....Пусть будет одна цель, а пути ее достижения могут разниться. От этого не поменяется смысл, содержание, а форма - понятие относительное....
А еще… одна линия не должна перекрывать другую. Они могут тянуться параллельно, но близко-близко, касаясь краями. Тянуться так в бесконечность....Да так бывает....Я знаю...Две Параллельные пересекаются в бесконечности - и они сами верят в это.
Главное - встретиться....волею Госпожи Случая... Неважно где и как....
Не проходите мимо....
P.S.ИМХО... но иногда две параллельные пересекаясь- образуют крест... крест ставится на всём...у кого то образуется крест, а кого то точка... и дальше параллельные уже никуда не идут... и так бывает... так бывает чаще всего...у многих...


Ждали.. минуты считали... видно устали... друг от друга вдали... чего то дождались,.. когда не встречались?... параллели все дальше,.. сжалившись-сжались... пересекшись в начале... разошлись-порвались... судьбы странные.. свидания рваные ,.. встречи стеклянные,.. мной изломанные.. сплелись в точку малую... жизнь усталую... сердце молчит, уже не горит... лишь тлеет- не греет... вроде пустяк
но затухший очаг, залит огонь... похорон перезвон- странный мой сон... едва холода.. но уже никогда.. не осветит звезда, этот путь в никуда.. разошлись поезда, забыли удачи, в любви нет сдачи... ведь мы параллели, точку общую имели... но не сберегли.. не вблизи, не вдали.. и снова одиноки,.. разные дороги... забыт твой номер.. хоть и не помер... в глазах печаль........... а жаль..

Параллельному лучистому свечению.. Пара ллельных линий.. так сильна их страсть… И как плод того пересечения... Маленькая точка родилась!.......

Параллельные линии не пересекаются.. Аксиома звучит обреченно.. Никогда.Никогда они...Не повстречаются.. Параллельные обрученные.. Обрученные, нареченные, параллельные.. Уходящие в даль запредельную.. Параллельные линии как правило! Не во времени,и не в этой конечности.. Не сойдутся в весёлой беспечности.. Как бы рядом их жизнь не ставила...И как близко не нарисованы.. Точек нет им пересечения...Спорить с правилами - рискованно.. Вот такое вот утверждение! Кто не понял, тому не и надобно... А кто понял - мой брат в несчастии.. От ушедшей любви нет снадобья- Лучше дружеского участья! Лучше новой любви, негаданной.. Жарких взглядов, объятий ласковых.. Варианты нам свыше заданы.. Не минуешь событий знаковых...Я желаю всем неба синего.. Счастья, радости и везения.. А изломанным жизнью линиям.. Больше точек пересечения! Ну а мы навсегда останемся.. Недоступностью отрешения... В жёлтом пламени свечки плавится.. Лишь наш след от пересечения....

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

История создания геометрии Лобачевского одновременно является историей попыток доказать пятый постулат Евклида. Этот постулат представляет собой одну из аксиом, положенных Евклидом в основу изложения геометрии (см. Евклид и его «Начала»). Пятый постулат – последнее и самое сложное из предложений, включенных Евклидом в его аксиоматику геометрии. Напомним формулировку пятого постулата: если две прямые пересекаются третьей так, что по какую-либо сторону от нее сумма внутренних углов меньше двух прямых углов, то по эту же сторону исходные прямые пересекаются. Например, если на рис. 1 угол – прямой, а угол чуть меньше прямого, то прямые и непременно пересекаются, причем справа от прямой . Многие теоремы Евклида (например, «в равнобедренном треугольнике углы при основании равны») выражают гораздо более простые факты, чем пятый постулат. К тому же проверить на эксперименте пятый постулат довольно сложно. Достаточно сказать, что если на рис. 1 расстояние считать равным 1 м, а угол отличается от прямого на одну угловую секунду, то можно подсчитать, что прямые и пересекаются на расстоянии свыше 200 км от прямой .

Многие математики, жившие после Евклида, пытались доказать, что эта аксиома (пятый постулат) – лишняя, т.е. она может быть доказана как теорема на основании остальных аксиом. Так, в V в. математик Прокл (первый комментатор трудов Евклида) предпринял такую попытку. Однако в своем доказательстве Прокл незаметно для себя использовал следующее утверждение: два перпендикуляра к одной прямой на всем своем протяжении находятся на ограниченном расстоянии друг от друга (т.е. две прямые, перпендикулярные третьей, не могут неограниченно удаляться друг от друга, как линии на рис. 2). Но при всей кажущейся наглядной «очевидности» это утверждение при строгом аксиоматическом изложении геометрии требует обоснования. В действительности использованное Проклом утверждение является эквивалентом пятого постулата; иначе говоря, если его добавить к остальным аксиомам Евклида в качестве еще одной новой аксиомы, то пятый постулат можно доказать (что и сделал Прокл), а если принять пятый постулат, то можно доказать сформулированное Проклом утверждение.

Критический анализ дальнейших попыток доказать пятый постулат выявил большое число аналогичных «очевидных» утверждений, которыми можно заменить пятый постулат в аксиоматике Евклида. Вот несколько примеров таких эквивалентов пятого постулата.

1) Через точку внутри угла, меньшего, чем развернутый, всегда можно провести прямую, пересекающую его стороны, т.е. прямые линии на плоскости не могут располагаться так, как показано на рис. 3. 2) Существуют два подобных треугольника, не равных между собой. 3) Три точки, расположенные по одну сторону прямой на равном расстоянии от нее (рис. 4), лежат на одной прямой. 4) Для всякого треугольника существует описанная окружность.

Постепенно «доказательства» становятся все изощреннее, в них все глубже прячутся малозаметные эквиваленты пятого постулата. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, чудовищно противоречащим нашей геометрической интуиции, но логического противоречия не получалось. А может быть, мы вообще никогда не придем на таком пути к противоречию? Не может ли быть так, что, заменив пятый постулат Евклида его отрицанием (при сохранении остальных аксиом Евклида), мы придем к новой, неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но тем не менее не содержит никаких логических противоречий? Эту простую, но очень дерзкую мысль математики не могли выстрадать в течение двух тысячелетий после появления «Начал» Евклида.

Первым, кто допустил возможность существования неевклидовой геометрии, в которой пятый постулат заменяется его отрицанием, был К. Ф. Гаусс. То, что Гаусс владел идеями неевклидовой геометрии, было обнаружено лишь после смерти ученого, когда стали изучать его архивы. Гениальный Гаусс, к мнениям которою все прислушивались, не рискнул опубликовать свои результаты по неевклидовой геометрии, опасаясь быть непонятым и втянутым в полемику.

XIX в. принес решение загадки пятого постулата. К этому открытию независимо от Гаусса пришел и наш соотечественник – профессор Казанского университета Н. И. Лобачевский. Как и его предшественники, Лобачевский вначале пытался выводить различные следствия из отрицания пятого постулата, надеясь, что рано или поздно он придет к противоречию. Однако он доказал много десятков теорем, не обнаруживая логических противоречий. И тогда Лобачевскому пришла в голову догадка о непротиворечивости геометрии, в которой пятый постулат заменен его отрицанием. Лобачевский назвал эту геометрию воображаемой. Свои исследования Лобачевский изложил в ряде сочинений, начиная с 1829 г. Но математический мир не принял идеи Лобачевского. Ученые не были подготовлены к мысли о том, что может существовать геометрия, отличная от евклидовой. И лишь Гаусс выразил свое отношение к научному подвигу русского ученого: он добился избрания в 1842 г. Н. И. Лобачевского членом-корреспондентом Геттингенского королевского научного общества. Это единственная научная почесть, выпавшая на долю Лобачевского при жизни. Он умер, так и не добившись признания своих идей.

Рассказывая о геометрии Лобачевского, нельзя не отметить еще одного ученою, который вместе с Гауссом и Лобачевским делит заслугу открытия неевклидовой геометрии. Им был венгерский математик Я. Бойяи (1802-1860). Его отец, известный математик Ф. Бойяи, всю жизнь работавший над теорией параллельных, считал, что решение этой проблемы выше сил человеческих, и хотел оградить сына от неудач и разочарований. В одном из писем он писал ему: «Я прошел весь беспросветный мрак этой ночи и всякий светоч, всякую радость жизни в ней похоронил... она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни...» Но Янош не внял предостережениям отца. Вскоре молодой ученый независимо от Гаусса и Лобачевского пришел к тем же идеям. В приложении к книге своего отца, вышедшей в 1832 г., Я. Бойяи дал самостоятельное изложение неевклидовой геометрии.

В геометрии Лобачевского (или геометрии Лобачевского Бойяи, как ее иногда называют) сохраняются все теоремы, которые в евклидовой геометрии можно доказать без использования пятого постулата (или аксиомы параллельности одного из эквивалентов пятого постулата, - включенной в наши дни в школьные учебники). Например: вертикальные углы равны; углы при основании равнобедренного треугольника равны; из данной точки можно опустить на данную прямую только один перпендикуляр; сохраняются также признаки равенства треугольников и др. Однако теоремы, при доказательстве которых применяется аксиома параллельности, видоизменяются. Теорема о сумме углов треугольника – первая теорема школьного курса, при доказательстве которой используется аксиома параллельности. Здесь нас ожидает первый «сюрприз»: в геометрии Лобачевского сумма углов любого треугольника меньше 180°.

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то в евклидовой геометрии равны и третьи углы (такие треугольники подобны). В геометрии Лобачевского не существует подобных треугольников. Более того, в геометрии Лобачевского имеет место четвертый признак равенства треугольников: если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.

Разность между 180° и суммой углов треугольника в геометрии Лобачевского положительна; она называется дефектом этого треугольника. Оказывается, что в этой геометрии площадь треугольника замечательным образом связана с его дефектом: , где и означают площадь и дефект треугольника, а число зависит от выбора единиц измерения площадей и углов.

Пусть теперь – некоторый острый угол (рис. 5). В геометрии Лобачевского можно выбрать такую точку на стороне , что перпендикуляр к стороне не пересекается с другой стороной угла. Этот факт как раз подтверждает, что не выполняется пятый постулат: сумма углов и меньше развернутого угла, но прямые и не пересекаются. Если начать приближать точку к , то найдется такая «критическая» точка , что перпендикуляр к стороне все еще не пересекается со стороной , но для любой точки , лежащей между и , соответствующий перпендикуляр пересекается со стороной . Прямые и все более приближаются друг к другу, но общих точек не имеют. На рис. 6 эти прямые изображены отдельно; именно такие неограниченно приближающиеся друг к другу прямые Лобачевский называет в своей геометрии параллельными. А два перпендикуляра к одной прямой (которые неограниченно удаляются друг от друга, как на рис. 2) Лобачевский называет расходящимися прямыми. Оказывается, что этим и ограничиваются все возможности расположения двух прямых на плоскости Лобачевского: две несовпадающие прямые либо пересекаются в одной точке, либо параллельны (рис. 6), либо являются расходящимися (в этом случае они имеют единственный общий перпендикуляр, рис. 2).

На рис. 7 перпендикуляр к стороне угла не пересекается со стороной , а прямые симметричны прямым относительно . Далее, , так что – перпендикуляр к отрезку в его середине и аналогично – перпендикуляр к отрезку в его середине. Эти перпендикуляры не пересекаются, и потому не существует точки, одинаково удаленной от точек , т.е. треугольник не имеет описанной окружности.

На рис. 8 изображен интересный вариант расположения трех прямых на плоскости Лобачевского: каждые две из них параллельны (только в разных направлениях). А на рис. 9 все прямые параллельны друг другу в одном направлении (пучок параллельных прямых). Красная линия на рис. 9 «перпендикулярна» всем проведенным прямым (т.е. касательная к этой линии в любой ее точке перпендикулярна прямой, проходящей через ). Эта линия называется предельной окружностью, или орициклом. Прямые рассмотренного пучка являются как бы ее «радиусами», а «центр» предельной окружности лежит в бесконечности, поскольку «радиусы» параллельны. В то же время предельная окружность не является прямой линией, она «искривлена». И другие свойства, которыми в евклидовой геометрии обладает прямая, в геометрии Лобачевского оказываются присущими другим линиям. Например, множество точек, находящихся по одну сторону от данной прямой на данном расстоянии от нее, в геометрии Лобачевского представляет собой кривую линию (она называется эквидистантой).

НИКОЛАЙ ИВАНОВИЧ ЛОБАЧЕВСКИЙ
(1792-1856)

С 14 лет жизнь Н.И.Лобачевского была связана с Казанским университетом. Его студенческие годы приходились на благополучный период в истории университета. Было у кого учиться математике; среди профессоров выделялся М.Ф. Бартельс, сотоварищ первых шагов в математике К. Ф. Гаусса.

С 1814 г. Лобачевский преподает в университете: читает лекции по математике, физике, астрономии, заведует обсерваторией, возглавляет библиотеку. В течение нескольких лет он избирался деканом физико-математического факультета.

С 1827 г. начинается 19-летний период его непрерывного ректорства. Все надо было начинать заново: заниматься строительством, привлекать новых профессоров, менять студенческий режим. На это уходило почти все время.

Еще в первых числах февраля 1826 г. он передал в университет рукопись «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», 11 февраля он выступил с докладом на заседании Совета университета. Собственно, речь шла не о доказательстве пятого постулата Евклида, а о построении геометрии, в которой имеет место его отрицание, т.е. о доказательстве его невыводимости из остальных аксиом. Вероятно, никто из присутствовавших не мог уследить за ходом мысли Лобачевского. Созданная комиссия из членов Совета несколько лет не давала заключения.

В 1830 г. в «Казанском вестнике» выходит работа «О началах геометрии», представляющая собой извлечение из доклада на Совете. Чтобы разобраться в ситуации, решили воспользоваться помощью столицы: в 1832 г. статью послали в Петербург. И здесь никто ничего не понял, работа была квалифицирована как бессмысленная. Не следует слишком сурово судить русских ученых: нигде в мире математики еще не были готовы воспринять идеи неевклидовой геометрии.

Ничто не могло поколебать уверенность Лобачевского в своей правоте. В течение 30 лет он продолжает развивать свою геометрию, пытается делать изложение более доступным, публикует работы по-французски и по-немецки.

Немецкую версию изложения прочитал Гаусс и, разумеется, понял автора с полуслова. Он прочитал его работы на русском языке и оценил их в письмах к ученикам, но публичной поддержки новой геометрии Гаусс не оказал.

Н. И. Лобачевский дослужился до высоких чинов, он был награжден большим числом орденов, пользовался уважением окружающих, но о его геометрии предпочитали не говорить, даже в те дни, когда Казань прощалась с ним. Прошло еще не менее двадцати лет, прежде чем геометрия Лобачевского завоевала права гражданства в математике.

Мы кратко коснулись только некоторых фактов геометрии Лобачевского, не упоминая многих других очень интересных и содержательных теорем (например, длина окружности и площадь круга радиуса здесь растут в зависимости от по показательному закону). Возникает убежденность, что эта теория, богатая очень интересными и содержательными фактами, в самом деле непротиворечива. Но эта убежденность (которая была у всех трех творцов неевклидовой геометрии) не заменяет доказательства непротиворечивости.

Чтобы получить такое доказательство, надо было построить модель. И Лобачевский это хорошо понимал и пытался ее найти.

Но сам Лобачевский этого уже не смог сделать. Построение такой модели (т.е. доказательство непротиворечивости геометрии Лобачевского) выпало на долю математиков следующего поколения.

В 1868 г. итальянский математик Э. Бельтрами исследовал вогнутую поверхность, называемую псевдосферой (рис. 10), и доказал, что на этой поверхности действует геометрия Лобачевского! Если на этой поверхности нарисовать кратчайшие линии («геодезические») и измерять по этим линиям расстояния, составлять из дуг этих линий треугольники и т.д., то оказывается, что в точности реализуются все формулы геометрии Лобачевского (в частности, сумма углов любого треугольника меньше 180°). Правда, на псевдосфере реализуется не вся плоскость Лобачевского, а лишь ее ограниченный кусок, но все же этим была пробита первая брешь в глухой стене непризнания Лобачевского. А через два года немецкий математик Ф. Клейн (1849-1925) предлагает другую модель плоскости Лобачевского.

Клейн берет некоторый круг и рассматривает такие проективные преобразования плоскости (см. Проективная геометрия), которые отображают круг на себя. «Плоскостью» Клейн называет внутренность круга , а указанные проективные преобразования считает «движениями» этой «плоскости». Далее, каждую хорду круга (без концов, поскольку берутся только внутренние точки круга) Клейн считает «прямой». Поскольку «движения» представляют собой проективные преобразования, «прямые» переходят при этих «движениях» в «прямые». Теперь в этой «плоскости» можно рассматривать отрезки, треугольники и т.д. Две фигуры называются «равными», если одна из них может быть переведена в другую некоторым «движением». Тем самым введены все понятия, упоминаемые в аксиомах геометрии, и можно производить проверку выполнения аксиом в этой модели. Например, очевидно, что через любые две точки проходит единственная «прямая» (рис. 11). Можно проследить также, что через точку , не принадлежащую «прямой» , проходит бесконечно много «прямых», не пересекающих . Дальнейшая проверка показывает, что в модели Клейна выполняются и все остальные аксиомы геометрии Лобачевского. В частности, для любой «прямой» (т.е. хорды круга ) и любой точки этой «прямой» существует «движение», переводящее ее в другую заданную прямую с отмеченной на ней точкой . Это и позволяет проверить выполнение всех аксиом геометрии Лобачевского.

Еще одна модель геометрии Лобачевского была предложена французским математиком А. Пуанкаре (1854-1912). Он также рассматривает внутренность некоторого круга ; «прямыми» он считает дуги окружностей, которые в точках пересечения с границей круга касаются радиусов (рис. 12). Не говоря подробно о «движениях» в модели Пуанкаре (ими будут круговые преобразования, в частности инверсии относительно «прямых», переводящие круг в себя), ограничимся указанием рис. 13, показывающего, что в этой модели евклидова аксиома параллельности места не имеет. Интересно, что в этой модели окружность (евклидова), расположенная внутри круга , оказывается «окружностью» и в смысле геометрии Лобачевского; окружность, касающаяся границы. Тогда свет будет (в соответствии с принципом Ферма о минимальности времени движения по световой траектории) распространяться как раз по «прямым» рассмотренной модели. Свет не может за конечное время дойти до границы (поскольку там его скорость убывает до нуля), и потому этот мир будет восприниматься его «жителями» бесконечным, причем по своей метрике и свойствам совпадающим с плоскостью Лобачевского.

Впоследствии были предложены и другие модели геометрии Лобачевского. Этими моделями была окончательно установлена непротиворечивость геометрии Лобачевского. Тем самым было показано, что геометрия Евклида не является единственно возможной. Это оказало большое прогрессивное воздействие на все дальнейшее развитие геометрии и математики в целом.

А в XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики, как одна из возможных геометрий, но и непосредственно связана с приложениями математики к физике. Оказалось, что взаимосвязь пространства и времени, открытая в работах X. Лоренца, А. Пуанкаре, А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского.

Недавно в посте на околонаучные темы один из комментаторов завел разговор о геометрии Лобачевского (что он ее не понимает) и даже вроде попросил объяснить. Я тогда ограничилась утверждением, что понимаю. Объяснять эту теорию в ограниченных рамках комментария и одним текстом (без рисунков) показалось мне невозможным.

Однако, подумав, я все же решила попробовать дать небольшой популярный экскурс в эту теорию.

Немного предыстории. Геометрия со времен Евклида стала аксиоматической теорией, в которой большинство утверждений доказывалось на основе нескольких постулатов (аксиом). Считалось, что эти аксиомы «очевидны», т.е. отражают свойства реального (физического) пространства.

Одна из этих аксиом вызывала у ученых подозрение: а нельзя ли ее вывести из остальных постулатов? Современная формулировка этой аксиомы такова:

«Через точку, не лежащую на заданной прямой, можно провести не более одной прямой, параллельной ей». То, что одну-то прямую можно провести, является не аксиомой, а теоремой.

При этом «параллельной» называется прямая, не пересекающая данную. Итак, суть аксиомы в том, что такая прямая – одна!

(Распространенное утверждение «Лобачевский доказал, что параллельные прямые могут и пересекаться» - конечно, является вопиюще неправильным! Ведь это бы противоречило их определению!)

Лобачевский, как и многие до него, решил доказать, что это утверждение можно вывести из других аксиом. Для этого он, как это часто делается в математике, выбрал метод «от противного», т.е. предположил, что прямых, не пересекающих данную, больше одной и попытался вывести из этого противоречие с другими фактами. Но чем дальше он развивал теорию, тем больше убеждался, что никакого противоречия не предвидится! Т.е. получалось, что теория с «неправильным» постулатом тоже имеет право на существование!

Конечно, в первое время его выкладки не признавали, смеялись над ним. Именно поэтому великий Гаусс (который пришел к тем же выводам) не рискнул опубликовать свои результаты. Но со временем пришлось признать, что ЧИСТО ЛОГИЧЕСКИ теория Лобачевского ничем не хуже евклидовой.

Один из остроумных способов убедиться в этом – придумать такие «прямые», которые ведут себя как «прямые» Лобачевского. И математики нашли такой пример, и не один.

Пожалуй, самой простой является модель Пуанкаре. Вы можете сами построить ее нехитрыми приборами.

Начертите не листке бумаги прямую. Возьмите циркуль и, ставя его иглу на эту прямую, нарисуйте полуокружности, находящиеся с одной стороны от прямой. Теперь сотрите прямую (и с ней – концевые точки полуокружностей). Так вот, эти полуокружности «без концов» и будут вести себя, как прямые в геометрии Лобачевского!

Действительно, выделим одну полуокружность и точку вне нее. Есть достаточно много полуокружностей, которые не пересекаются с исходной и все проходят через данную точку. Среди них выделяются две: они касаются нашей исходной «прямой» в концевых точках (которые мы, как Вы помните, стерли) Т.е. реального пересечения не происходит. Эти две окружности задают «границы», между которыми находятся все прямые, не пересекающие данную. Их – бесконечное количество.

Можно заметить, что треугольники в этой модели не такие, как на плоскости (евклидовой): сумма их углов меньше 180 градусов! Впрочем, чем меньше треугольник, тем больше сумма его углов. В «малом», на небольших расстояниях, геометрия Лобачевского практически совпадает с геометрией Евклида. Поэтому, вообще говоря, мы не сможем «экспериментально» отличить одну от другой, если окажется, что доступные нам (космические) расстояния– малы для этой цели.

Впрочем, в наше время ни физики, ни, тем более, математики, не пытаются воспринимать геометрию Лобачевского как модель «реального», физического пространства. Математики поняли, что все, что они могут сказать: если верны такие-то аксиомы, то верны и такие-то теоремы. Ну, а что такое «множества», «точки», «прямые», «углы», «расстояния», и т.п. – этого мы не знаем! Прямо как у Станислава Лема: «Сепульки – это объекты для сепулькирования»

«Говорят, Бертран Рассел определил математику как науку, в которой мы никогда не знаем, о чем говорим, и насколько правильно то, что мы говорим. Известно, что математика широко применяется во многих других областях науки. [ …] Таким образом, одна из главных функций математического доказательства – создание надежной основы для проникновения в суть вещей.»

(из книги «Физики шутят»)

Интересные сведения о соотношении математики и эмпирики можно почерпнуть в работе